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Abstract
Background: Hand, foot, and mouth disease (HFMD) is a global health concern requiring a risk assessment framework based
on systematic factors analysis for prevention and control.
Objective: This study aims to construct a comprehensive HFMD risk assessment framework by integrating multisource
data, including historical incidence information, environmental parameters, and web-based search behavior data, to improve
predictive performance.
Methods: We integrated multisource data (HFMD cases, meteorology, air pollution, Baidu Index, and public health measures)
from Bao’an District of Shenzhen city in Southern China (2014‐2023). Correlation analysis was used to assess the associations
between HFMD incidence and systematic factors. The impacts of environmental factors were analyzed using the Distributed
Lag Nonlinear Model. Seasonal Autoregressive Integrated Moving Average model and advanced machine learning methods
were used to predict HFMD 1-4 weeks ahead. Risk levels for the 1- to 4-week-ahead forecasts were determined by comparing
the predicted weekly incidence against predefined thresholds.
Results: From 2014 to 2023, Bao’an District reported a total of 118,826 cases of HFMD. Environmental and search behavior
factors (excluding sulfur dioxide) were significantly associated with HFMD incidence in nonlinear patterns. For 1-week-ahead
prediction, Seasonal Autoregressive Integrated Moving Average using case data alone performed best (R²=0.95, r=0.98,
mean absolute error=53.34, and root-mean-square error=99.31). For 2- to 4-week-ahead forecasting, machine learning models
incorporating web-based and environmental data showed superior performance (R²=0.83, 0.75, and 0.64; r=0.92, 0.87, and
0.80; mean absolute error=87.84, 112.41, and 132.47; and root-mean-square error=185.08, 229.13, and 276.81). The predicted
HFMD risk levels matched the observed levels with accuracies of 96%, 87%, 88%, and 83%, respectively.
Conclusions: The epidemic dynamics of HFMD are influenced by multiple factors in a nonlinear manner. Integrating
multisource data, particularly web-based search behavior, significantly enhances the accuracy of short- and midterm forecasts
and risk assessment. This approach offers practical insights for developing digital surveillance and early warning systems in
public health.
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Introduction
Hand, foot, and mouth disease (HFMD), an infectious
disease primarily affecting children younger than 5 years, has
emerged as an important global public health challenge [1,2].
Driven mainly by enterovirus 71 (EV71) and coxsackievirus
A16 (CA16), HFMD is easily spread in environments where
children congregate [3]. It’s typically 3‐5 days of incubation
that precedes distinctive rashes and vesicles on the hands,
feet, and oral cavity [4]. The Asia-Pacific region bears a high
burden [5], with China reporting a record of 1.68 million
cases in 2023 [6]. For timely and targeted interventions,
understanding the circulation mechanisms of HFMD and an
accurate prediction model for real future risk assessment are
needed.

The epidemiology of HFMD is shaped by a complex
interplay of systematic factors. Beyond pathogen and host
immunity impacts, meteorological conditions and air quality
emerge as critical determinants of HFMD transmission
dynamics [7]. A growing body of evidence highlights the
significant influence of temperature, relative humidity, wind
speed, and diurnal temperature range (DTR) on HFMD
transmission [8-12]. In addition, air pollution has emerged
as a crucial cofactor, with PM2.5, PM10, SO2, NO2, and
O3 levels demonstrating significant associations with HFMD
incidence [9,10,13,14]. These environmental factors likely
influence HFMD transmission through multiple pathways:
altering viral viability, modulating host immunity, and
affecting human behavior patterns [15,16]. Consequently,
when constructing a risk assessment framework for HFMD,
meteorological factors and air pollution should be considered
as essential components.

While environmental drivers are well documented,
traditional surveillance systems (eg, case reports) struggle to
capture real-time transmission dynamics of HFMD. Web-
based search data are a novel tool that can provide real-time
insights via public queries on symptoms, treatments, and
prevention [17,18]. Numerous studies demonstrate web-based
search data’s use in enhancing disease incidence prediction.
Incorporating Baidu search index improves HFMD model
accuracy [19], while Google Influenza Trends successfully
tracked influenza outbreaks [20]. Similar applications in
dengue, scarlet fever, chickenpox, and Ebola outbreaks [21-
23] further validate this approach. However, challenges
remain, including media-driven search distortion, inconsistent
web-based penetration affecting data representativeness, and
policy-induced shifts in search patterns [24]. Therefore, an
optimal HFMD risk assessment framework should integrate
traditional surveillance and web-based search data synergisti-
cally, balancing their complementary strengths for enhanced
accuracy and timeliness.

Advancements in predictive modeling now offer opportu-
nities to leverage these multisource data more effectively.
Early studies predominantly used Seasonal Autoregressive

Integrated Moving Average (SARIMA) time series mod-
els, which effectively capture annual cyclical and seasonal
variations but require high data stationarity and struggle with
nonlinear relationships and outliers [25-27]. Machine learning
introduced advanced algorithms (eg, Extreme Gradient
Boosting [XGBoost] and random forest [RF]), outperform-
ing traditional models in capturing complex epidemiologi-
cal patterns [28,29]. Hybrid models have further enhanced
accuracy, such as ARIMA-EEMD-LSTM, combining time
series decomposition with neural network adaptability [30-
33]. However, current studies lack systematic compari-
sons between traditional and advanced models’ predictive
performance, as well as clear risk-level translation—both
critical for accurate HFMD early warning.

Beyond model performance, the ultimate goal of ensur-
ing the effectiveness of an HFMD risk assessment frame-
work depends on its capacity to translate case predictions
into actionable risk levels for prevention. Several Chinese
cities have developed an influenza index and HFMD index
[34-39]. For example, Shenzhen Center for Disease Con-
trol and Prevention implemented an HFMD risk index to
guide targeted prevention measures based on risk levels [36,
37], advising improved hygiene and avoidance of crowded
areas during high-risk periods. However, current HFMD risk
assessments often depend on single-source surveillance data
for short-term (1-week ahead) predictions, limiting accuracy.
Although some studies have developed multisource predic-
tion models, effectively translating forecasts into actionable
risk levels remains rare. This gap highlights the need for a
more comprehensive risk assessment framework integrating
multisource data for early warning and effective prevention.

This study is conducted in Bao’an District of Shenz-
hen, a typical high-density subtropical urban region within
the Guangdong-Hong Kong-Macao Greater Bay Area
that experiences persistent challenges in HFMD transmis-
sion. Despite the high disease burden, prediction research
integrating environmental drivers with epidemiological
patterns has remained limited. To address this gap, this
study aims to develop a comprehensive HFMD risk assess-
ment framework by integrating multisource data (historical
incidence, environmental parameters, and web-based search
behavior data), enabling the translation of predicted cases into
actionable risk levels to support prevention strategies (Figure
S1 in Multimedia Appendix 1).

Methods
Study Site
Bao’an District, located on the eastern bank of the Pearl River
Estuary in the northwest of Shenzhen, a coastal region in
South China, spans a total area of 724.6 square kilometers.
The district’s permanent resident population reached 4.5654
million in 2023, ranking first in the city. Characterized by
a subtropical monsoon maritime climate, Bao’an District

JMIR INFODEMIOLOGY Chen et al

https://infodemiology.jmir.org/2025/1/e75434 JMIR Infodemiology 2025 | vol. 5 | e75434 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/75434
https://infodemiology.jmir.org/2025/1/e75434


enjoys ample sunlight, abundant rainfall, and a mild climate.
Specifically, the region has an average annual temperature of
22 °C, an average relative humidity of 76%, and an air quality
excellence rate exceeding 90%. Regarding environmental
air quality, particulate matter and ozone are the primary
pollutants.
Data Sources

Incidence Data
The first dataset of this study comprises the case count of
HFMD. We collected case data for Bao’an District, Shenz-
hen, from January 1, 2014, to December 31, 2023, through
the “China Information System for Disease Control and
Prevention.” HFMD is classified as a Category C notifia-
ble infectious disease, with case reporting adhering to the
regulations of the “Law of the People’s Republic of China on
the Prevention and Treatment of Infectious Diseases” and the
“Norms for the Management of Infectious Disease Informa-
tion Reporting.” The diagnostic criteria adhered to the Health
Industry Standards of the People’s Republic of China (WS
588‐2018) [40]. The collected information documented the
patient’s gender, date of birth, and date of symptom onset. In
this study, the daily number of HFMD cases was calculated
based on the date of symptom onset.

Environment Data
Meteorological data were collected from an online platform
that provides global weather information, encompassing
daily average temperature, maximum temperature, minimum
temperature, relative humidity, wind speed, and atmospheric
pressure in Shenzhen. In addition, the DTR was calcula-
ted as the difference between daily maximum and mini-
mum temperatures. Air pollution data were obtained from
the Qingyue Data website, which includes daily average
concentrations of fine particulate matter (PM2.5, μg/m3),
inhalable particulate matter (PM10, μg/m3), sulfur diox-
ide (SO2, μg/m3), nitrogen dioxide (NO2, μg/m3), carbon
monoxide (CO, mg/m3), and ozone (O3, μg/m3) in Shenzhen.

Baidu Index
In this study, we collected daily HFMD-related keywords
(n=51) from a commercial website and Baidu Index and
supplemented them with additional terms (n=5) based
on prior literature and etiological knowledge [41]. After
excluding duplicates (n=2) and terms with a correlation
coefficient less than 0.4 with HFMD (n=33), a total of
22 terms remained. These terms were categorized into 4
groups: definition (n=6), symptom (n=6), treatment (n=7),
and prevention (n=2) (Table S1 in Multimedia Appendix 2).
To construct 4 separate composite Baidu Indexes correspond-
ing to each category, we calculated the product of each term’s
search frequency and its correlation coefficient with HFMD,
normalized this product by the total correlation coefficient
to obtain a ratio, and then summed these ratios within each
category. These composite indexes were used to analyze and
predict HFMD incidence trends.

(1)CI = Ni × ri / ri

In equation (1), CI denotes the composite index, a metric
designed to quantify the relationship between search trends
of specific Baidu Index–related keywords and HFMD case
numbers. Ni represents the search index for the i th keyword,
reflecting the search volume of that HFMD-related keyword.
ri is Pearson correlation coefficient between the search index
of the i th keyword and HFMD case numbers. ∑ri denotes
the sum of Pearson correlation coefficients for all related
keywords, serving as a normalizing factor to account for the
collective impact of all selected keywords in the composite
index.

Public Health and Social Measures
The Government Response Indicator was obtained from the
COVID-19 Government Response Tracker . This composite
index, based on 13 policy response indicators such as school
closures, workplace closures, travel bans, testing policies,
contact tracing, mask mandates, and vaccination policies,
is standardized on a scale of 0-100, reliably measuring the
intensity of public health and social measures (PHSMs) over
time.
Statistical Analysis

Descriptive Analysis
Descriptive statistics were used to characterize HFMD
case distributions across population, temporal, and spatial
dimensions, and to assess the distribution of environmental
factors and PHSMs. Spearman correlation analysis was used
to evaluate the associations between HFMD case counts and
both environmental factors and PHSMs. In addition, Pearson
correlation coefficient was used to assess the correlation
between the Baidu Index and the number of HFMD cases.

We used the Partial Autocorrelation Function (PACF) to
analyze the autocorrelation between HFMD incidence and
its lagged values. The PACF measures the direct correla-
tion between the current value yt and the lagged value
yt-k, after removing the effects of intermediate lags (yt-1,
yt-2,..., yt-k-1) [42]. This analysis helped identify significant
lagged correlations in the HFMD incidence time series, which
informed model selection and parameter estimation.

We conducted lagged cross-correlation analysis to assess
the relationship between Baidu Index and HFMD incidence
at various time lags. This method evaluates the correla-
tion between 2 time series while considering the dynamic
interactions over time [43]. By calculating cross-correlation
coefficients at different lags, we identified potential time-lag-
ged associations between web-based search data and HFMD
incidence. These findings provided essential time series
feature information for constructing predictive models.

Factor Analysis
This study used the Distributed Lag Nonlinear Model
(DLNM) to analyze the risk factors influencing HFMD.
DLNM, which focuses on cross-basis functions, is capable
of examining nonlinear and lagged effects between exposure
and response variables. It has been widely used to study
the complex impacts of environmental exposures on diseases
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[44]. By integrating the results of Spearman correlation
analysis and excluding collinearity among environmental
indicators, we ultimately selected environmental factors
associated with HFMD for inclusion in the model. Envi-
ronmental factors were treated as independent variables,
with weekly case counts as the dependent variable, while
controlling for confounding factors such as day-of-week
effects, holiday effects, and long-term trends. Allowing for
overdispersion, a quasi-Poisson regression was applied based
on DLNM. The model formula is as follows:

(2)Yt ∼ Quasi − Poisson μt
(3)log E[μt] = α + cb(var) + ns(timet, df = 7/year)+βDOWt + γHolidayt + f(covi) + autoregressiveterms

In equations (2) and (3), Yt represents the number of HFMD
cases in week t; α represents the intercept; and var refers
to meteorological factors or air pollutants. The function cb
stands for cross-basis that integrates both exposure and lag
dimensions. Dowt represents the day-of-week effect, and
Holidayt represents the holiday effect. ns indicates natural
spline functions, and timet controls for long-term trends. The
function f (cov) refers to other factors except var in the model
to control the confounding effect. Autoregressive terms refer
to the autoregressive terms of daily HFMD counts [45]. We
used a smoothing function to manage the first and second
lags of the number of cases in our model, indirectly reflecting
the effect of population immunity on the pattern of HFMD
transmission. The maximum lag days and degrees of freedom
in the model were determined using the Akaike informa-
tion criterion for quasi-Poisson (Q-AIC). The maximum lag
time for environmental factors was set to 14 days, and the
long-term trend was set to 7 per year. In this model, both
environment factors and lag spaces were fitted using natural
cubic spline functions, with 4 degrees of freedom (df) for
environment factors and 3 df for lag spaces, based on the
Q-AIC and prior literature [10].

Prediction Model
The prediction task was formulated as a retrospective time
series regression problem, with the target being the weekly
number of HFMD cases in the subsequent 1-4 weeks (Figure
S1 in Multimedia Appendix 3). Given that previous studies
have demonstrated the high accuracy of the SARIMA model
in short-term forecasting of HFMD, we first constructed a
prediction model using only HFMD case counts, based on the
SARIMA model (Table S1 in Multimedia Appendix 4).

We then developed 1- to 4-week-ahead predictive
models using 3 tree-based machine learning algorithms:
RF, XGBoost, and Light Gradient Boosting Machine
(LightGBM). Predictor variables included environmental
factors associated with HFMD identified in previous analyses,
Baidu Composite Index, PHSMs, holidays, week numbers,
and historical HFMD case counts reflecting infection sources
and population immunity (Table S1 in Multimedia Appen-
dix 4). To address multicollinearity, variables with pairwise

correlation coefficients exceeding 0.8 were screened, and
those less correlated with HFMD incidence were excluded.

To further enhance prediction performance, we used a
stacking ensemble strategy. The 3 tree-based models served
as base learners, and their prediction outputs were used
as input features for a metalearner. To reduce the risk of
overfitting, we selected a linear regression model as the
metalearner due to its simplicity and strong generalization
ability. The final ensemble model was trained using this
2-level architecture.

Data from 2014 to 2023 were divided into a training
set (2014‐2022) and a testing set (2023). Model hyperpara-
meters were tuned using 5-fold time series cross-validation
on the training set. Based on the optimized parameters, we
constructed 1- to 4-week-ahead predictive models for HFMD
incidence using each of the 3 base models (RF, XGBoost, and
LightGBM) as well as the stacking ensemble model.

Model performance was evaluated on the testing set using
several common regression metrics, including the coefficient
of determination (R²), Pearson correlation coefficient (r),
mean absolute error (MAE), and root-mean-square error
(RMSE). Lower MAE, lower RMSE, higher R2, and higher
r indicated better forecasting performance (Formula 1 in
Multimedia Appendix 5).

Risk Assessment
Based on the weekly HFMD case data from 2014 to 2019
(before COVID-19 pandemic), the cumulative distribution
function of weekly case counts was calculated. The 40th,
60th, and 80th percentiles of the cumulative distribution
function were then used as thresholds to classify epidemic
risk levels. The selection of the 40%, 60%, and 80% quantiles
as risk thresholds was based on 2 considerations. First,
local experts recommended quantile-based thresholds for their
practicality in supporting tiered risk management. Second,
similar percentile-based classifications have been adopted
in previous studies [34,39], which informed our framework
design. Specifically, the predicted weekly case counts were
compared against the aforementioned thresholds to deter-
mine the risk level as follows. High risk: case count >80th
percentile; moderate risk: 60th percentile < case count ≤ 80th
percentile; medium risk: 40th percentile < case count ≤ 60th
percentile; and low risk: case count ≤ 40th percentile.

The accuracy of risk assessment was evaluated by
calculating the accuracy rate, overestimation rate, and
underestimation rate (Formula 2 in Multimedia Appendix 6).
Higher accuracy and lower overestimation and underestima-
tion rates indicated better risk assessment performance.

Software and Visualization
Data cleaning and descriptive analysis, as well as predic-
tive analysis, were performed using Python (version 3.12.4;
Python Software Foundation). Predictive models included
SARIMA (pmdarima), machine learning algorithms such
as RF (sklearn), extreme gradient boosting (xgboost), light
gradient boosting (lightgbm), and a stacked model construc-
ted using sklearn components. The DLNM was constructed
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in R (version 4.4.2; R Foundation for Statistical Computing)
using the dlnm package.
Ethical Considerations
All data used in our study was anonymized and deidenti-
fied and did not involve data related to humans. Therefore,
our research was exempted from the requirement of written
informed consent and was approved by the ethics committee
of the Bao’an Center for Disease Control and Prevention.

Results
Data Description
From 2014 to 2023, Bao’an District in Shenzhen
City reported a total of 118,826 HFMD cases, 93.6%

(111,181/118,826) of which occurred in children aged 5 years
and younger (Table 1). The incidence of HFMD displayed
a significant seasonal pattern characterized by a bimodal
distribution (Figure 1A). The primary peak spanned from
approximately week 12 to week 32, coinciding with the
spring and summer seasons, while a secondary peak emerged
from around week 36 to week 45, corresponding to the
autumn and winter seasons (Figure 1A). During the study
period, the incidence of HFMD in Bao’an District exhibi-
ted significant geographical variations. The highest incidence
was observed in the central areas, specifically in Xin’an and
Xi’xiang subdistricts (Figure 1B and C).

Table 1. Characteristics of the hand, foot, and mouth disease cases in Bao’an district of Shenzhen from 2014 to 2023.
Characteristics Proportion, n (%)
Sex
  Male 71,441 (60.1)
  Female 47,385 (39.9)
Age (years)
  0‐5 111,181 (93.6)
  6‐12 6455 (5.4)
  13‐15 147 (0.1)
  16‐18 65 (0.1)
  19‐60 972 (0.8)
  >60 6 (0.0)
Career
  Children in the diaspora 88,858 (74.8)
  Children in nursery 24,809 (20.9)
  Students 4169 (3.5)
  Others 990 (0.8)
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Figure 1. Temporal and spatial distribution of incidence of hand, foot, and mouth disease (HFMD) in Bao’an District from 2014 to 2023. (A) Time
series diagram of the number of weekly HFMD cases. (B) Spatial distribution of the number of HFMD cases in Bao’an District from 2014 to 2018.
(C) Spatial distribution of the number of HFMD cases in Bao’an District from 2019 to 2023.

Throughout the study period, meteorological factors such as
temperature, atmospheric pressure, relative humidity, DTR,
and air pollutants such as PM2.5, PM10, SO2, NO2, O3,
and CO, as well as Baidu Index showed obvious seasonal
fluctuations (Figure S1 in Multimedia Appendix 7 and Figure
S1 in Multimedia Appendix 8).

Systematic Factors Affecting HFMD
Table S1 in Multimedia Appendix 9 provides an overview
of the statistical distribution of HFMD case counts and
systematic factors. During the study period, the average
number of HFMD cases was 32.53. Spearman correlation
analysis between HFMD and environmental factors (Table
S1 in Multimedia Appendix 9) revealed that daily average
temperature exhibited the most significant correlation with

HFMD, with a correlation coefficient of 0.62. Except for SO2,
HFMD showed negative correlations with other air pollutants.

PACF analysis (Figure S1 in Multimedia Appendix
10) revealed significant autocorrelation between HFMD
incidence and its lagged values at 1- to 3-week intervals.
Lagged cross-correlation analysis (Figure S1 in Multimedia
Appendix 11) indicated that Baidu search index, including
both the composite index and the sub-index for definition,
symptoms, treatment, and prevention, exhibited the strongest
correlation with HFMD case counts during the week of
disease onset.

The analysis of influencing factors indicates that mete-
orological variables and air pollutants exhibit lagged and
nonlinear effects on HFMD incidence (Figure 2 and Figure
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S1 in Multimedia Appendix 12). Temperature demonstrates
an inverted V-shaped relationship with relative risk increasing
up to a specific threshold before declining (Figure 2A). Low
relative humidity appears to have a protective effect, whereas
low atmospheric pressure and a reduced DTR are associated
with an elevated risk of HFMD (Figure 2B-D). Wind speed
follows an S-shaped pattern in its association with HFMD
incidence (Figure 2E). In our analysis, ambient concentra-
tions of PM2.5, PM10, CO, and O3 were inversely associated

with HFMD risk (Figure 2G-J), with higher pollutant levels
correlating with a lower relative risk of disease. Further-
more, NO2 demonstrated a positive association with HFMD
incidence at low concentration ranges (Figure 2F), while its
effect was not statistically significant at higher or extremely
low concentrations. In addition, SO2 does not show a
statistically significant impact on HFMD incidence and was
therefore excluded from subsequent predictive modeling
(Figure 2K).

Figure 2. Relative risks for hand, foot, and mouth disease incidence associated with environmental factors and lags using Distributed Lag Nonlinear
Models in Bao’an District from 2014 to 2023: (A) temperature, (B) relative humidity, (C) air pressure, (D) daily temperature range, (E) wind speed,
(F) NO2, (G) PM2.5, (H) PM10, (I) CO, (J) O3, and (K) SO2.

Predictive Results
The prediction results indicate that the SARIMA model
exhibited the highest predictive accuracy for the 1-
week-ahead forecast (R²=0.95, r=0.98, MAE=53.34, and

RMSE=99.31) (Table S1 in Multimedia Appendix 13 and
Figure 3A). For midterm forecasts (2‐4 weeks ahead),
the ensemble model integrating multiple machine learning
algorithms demonstrated superior performance (2 weeks:
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R²=0.83, r=0.92, MAE=87.84, and RMSE=185.08; 3 weeks:
R²=0.75, r=0.87, MAE=112.41, and RMSE=229.13; and 4

weeks: R²=0.64, r=0.80, MAE=132.47, and RMSE=276.81)
(Table S1 in Multimedia Appendix 13 and Figure 3B-D).

Figure 3. Time series comparison of predicted and observed values by different models for 1- to 4-week-ahead forecasts on the 2023 test set.
(A) 1-week-ahead prediction versus observed. (B) 2-week-ahead prediction versus observed. (C) 3-week-ahead prediction versus observed. (D)
4-week-ahead prediction versus observed. LightGBM: Light Gradient Boosting Machine; SARIMA: Seasonal Autoregressive Integrated Moving
Average; XGBoost: Extreme Gradient Boosting.

Moreover, the predicted incidence curves closely aligned
with the observed epidemic trends, further supporting the
reliability of the models (Figure 3). However, some temporal
discrepancies were observed in peak incidence predictions,
with slight time lags in forecasting epidemic peaks (Figure
3). In addition, the predictive accuracy exhibited a gradual
decline as the forecasting horizon extended from 1 to 4 weeks
(Figure 3).
Risk Assessment Index
The risk assessment analysis for HFMD in Bao’an District
during 2023, based on the prediction results of the stacking

model, demonstrated good predictive performance (Table S1
in Multimedia Appendix 14 and Figure 4A-D), with forecast
accuracy exceeding 80% across all 1- to 4-week-ahead
prediction windows. The 1-week-ahead short-term prediction
model achieved exceptional accuracy with forecast accuracy
of 96% (Figure 4A and Table S1 in Multimedia Appendix
14).
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Figure 4. The results of risk levels of hand, foot, and mouth disease (HFMD) for 1-4 weeks ahead using stacking models. (A) 1-week-ahead HFMD
risk levels. (B) 2-week-ahead HFMD risk levels. (C) 3-week-ahead HFMD risk levels. (D) 4-week-ahead HFMD risk levels.

Discussion
Principal Findings
Based on a comprehensive analysis of the impact of systemic
factors on HFMD, we innovatively designed an HFMD risk
prediction framework by comparing traditional and advanced
machine learning prediction models. Our findings suggest
that air pollutants and meteorological factors other than SO₂
have a significant effect on the incidence of HFMD (Figure
2 and Figure S1 in Multimedia Appendix 12). In addition,
Baidu Index proves to be an effective tool for capturing
the epidemic trend of HFMD during the onset week (Fig-
ure S1 in Multimedia Appendix 11). While the SARIMA
model performs well in 1-week-ahead short-term forecast,
advanced machine learning methods incorporating systemat-
ical factors performed better for 2- to 4-week-ahead mid-
term forecasts (Table S1 in Multimedia Appendix 13 and
Figure 3). Furthermore, the predicted risk levels based on
the advanced forecast models aligned closely with the actual
levels (Table S1 in Multimedia Appendix 14 and Figure 4).

Our analysis revealed that meteorological factors exert
nonlinear effects on HFMD incidence (Figure 2 and Figure
S1 in Multimedia Appendix 12). Temperature exhibits an
inverted V-shaped effect on the risk of HFMD, corresponding
to optimal conditions for enterovirus survival and trans-
mission [8,9]. Elevated relative humidity enhances HFMD
transmission, likely through prolonged virus stability in
aerosols [10-12]. Wind speed exerts dual effects: moder-
ate levels reduce risk via particle dispersion [11,46], while
extreme winds may increase transmission through environ-
mental disruption. The daily temperature variation and other
influences of atmospheric pressure indicate that there is a
complex interaction between climate and pathogens, but the
mechanism details need further study [8].

Our findings showed a negative nonlinear association
between ambient concentrations of PM₂.₅, PM₁₀, O₃, and CO

and HFMD incidence, consistent with evidence that ozone’s
virucidal oxidative effects and pollution-induced behavio-
ral changes (eg, reduced outdoor activity) may suppress
transmission [9,10,13,14]. Our study found that low-con-
centration NO2 exposure exhibited a positive association,
likely mediated by NO2-induced respiratory inflammation
and impaired mucosal defenses [10]. The effects dimin-
ished beyond a narrow exposure range, indicating threshold-
dependent influences. In contrast, SO2 showed no statistically
significant relationship with HFMD incidence, possibly due
to regional differences in emissions, atmospheric chemis-
try, or population susceptibility. Collectively, these findings
illustrate the nonlinear relationship between multidimensional
environmental exposures and HFMD transmission patterns.
These insights informed the development of our multifactorial
prediction framework, which improved predictive accuracy.

This study also evaluated the predictive value of web-
based search data for the incidence of HFMD. Our results
show that the composite Baidu Index and its subindex are
effective in capturing epidemiological fluctuations in the
week of onset (Figure S1 in Multimedia Appendix 11),
which is consistent with previous findings [19]. Compared
with traditional passive monitoring that relies on laboratory
confirmations and case reports, Baidu search data have the
advantage of real-time performance and can reflect epidemic
changes 3-7 days in advance, which provides a key supple-
ment for early warning. Similar to previous studies [17,19],
this study constructed a multidimensional Baidu comprehen-
sive index by screening core subindicators. This method
not only improves the prediction accuracy but also realizes
the dynamic tracking and trend prediction of public health
concerns by integrating multidimensional search data (rather
than a single indicator). It proves the dual advantages of
Baidu Index in infectious disease surveillance, which is both
timely and comprehensive. These findings not only verify
the universality of digital epidemiology in local areas but
also provide a paradigm for other low-income countries to
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optimize infectious disease surveillance by using localized
web-based data.

Our study further compared the predictive performance of
traditional models and advanced machine learning models
on different time scales. The results showed that SAR-
IMA demonstrated higher accuracy in 1-week-ahead short-
term forecast than other machine learning models, which
is consistent with previous studies in Nanjing [26] and
Sabah [27]. The advanced machine learning models exhibi-
ted superior predictive capacity for 2- to 4-week-ahead
midterm forecasts (Table S1 in Multimedia Appendix 13
and Figure 3). Our findings align partially with a Japanese
Long Short-Term Memory Network–based study [29] but
achieve earlier detection (2‐4 weeks) and higher accuracy
through multimodel integration. Unlike prior hybrid model
studies in Wuhan [33], Chongqing [30], and Xinjiang [32],
our multiscale framework uniquely combines predictive
performance with optimized model selection across tempo-
ral scales, offering more actionable guidance. SARIMA
is optimal for rapid response scenarios requiring immedi-
ate decisions, as it relies solely on historical incidence
data without requiring additional variables [31,33]. Machine
learning better supports midterm preparedness planning due
to its ability to incorporate diverse predictors, although
it demands greater technical capacity. For practical imple-
mentation, we recommend aligning model selection with
both operational timelines (short-term vs midterm needs)
and local data infrastructure, while future research should
explore hybrid systems that combine SARIMA’s reliability
with machine learning’s adaptability, alongside translating
forecasts into operational risk assessments.

In recent years, the importance of infectious disease risk
prediction in disease control has increased. Risk indices for
common infectious diseases such as influenza and HFMD
have been developed in a number of cities in China, including
Shenzhen [37], Zhuhai [35], Beijing [39], and Maanshan
[38]. These indices are released to the public to provide
early warning of disease risks, thereby raising public health
awareness and promoting healthy behaviors with positive
social benefits. However, existing risk indices are largely
based on notifiable infectious disease reports and sentinel
hospital surveillance data, with insufficient consideration
of the impact of systemic factors on disease transmission.
Moreover, prediction models often rely on simple multiple
linear equations, resulting in suboptimal prediction accuracy.
For instance, the predicted concordance rate of the HFMD
risk index in Shenzhen was only 77.8% between August 2017
and November 2018 [36]. To overcome previous limitations,
this study integrates diverse data sources with advanced
machine learning models, developing a more accurate
and reliable HFMD risk prediction framework (risk-level
accuracy of >90%; Figure 4 and Table S1 in Multimedia

Appendix 14). Operationalized in Shenzhen’s Bao’an District,
our model outperforms existing methods by incorporating
multidimensional environmental and epidemiological data to
deliver precise 1‐ to 4-week forecasts. This provides a robust,
data-driven foundation for public health decision-making and
proactive community guidance.
Limitations
This study acknowledges several limitations. First, the study
was conducted in a limited geographic area, which may
restrict the generalizability of the findings. Second, we used
average exposure estimates for meteorological factors and air
pollutants in Shenzhen rather than individual direct measure-
ment, resulting in exposure measurement errors, but they are
likely to be random and nondifferential. Third, the HFMD
surveillance data were obtained from a passive monitoring
system, which inherently fails to capture all cases, particu-
larly those with mild symptoms that do not warrant medical
consultation. Fourth, the transmission of HFMD is influ-
enced by an even more extensive range of factors, including
individual vaccination and immune status, lifestyle practices,
hygiene practices, contact patterns (particularly in house-
holds and childcare settings), indoor environments, ventila-
tion conditions, socioeconomic determinants, and population
metrics, such as size and density. Additionally, different
types of pathogens may affect the transmission patterns
of HFMD, highlighting the importance of laboratory-based
pathogen data analysis for identifying the temporal trends and
characteristics of HFMD. Finally, with the rapid advancement
of artificial intelligence technologies, exploring their effective
application in HFMD prediction is an important direction
for future research. Future studies should further investigate
the roles of these multidimensional factors and integrate
more advanced predictive techniques to better understand
and monitor the epidemiological trends of HFMD, thereby
effectively reducing the risk of infection.
Conclusions
With explorations of the complex influencing pattern for
systematic factors, this study developed a prediction model
and future epidemic risk assessment framework for HFMD
by integrating HFMD incidence data, environmental factors,
Baidu Index, and public health interventions using advanced
machine learning algorithms. The results highlight the
significant role of systematic factors in long-term HFMD
predictions and precise risk assessment and demonstrate
the model’s potential to enhance public health decision-mak-
ing. Future research should incorporate additional multidi-
mensional factors, including host characteristics, pathogen
properties, and socioeconomic conditions, and further explore
their interactive effects with more advanced technologies to
optimize HFMD risk prediction and control strategies.
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