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Abstract
Background: The opioid crisis poses a significant health challenge in the United States, with increasing overdoses and
death rates due to opioids mixed with other illicit substances. Various strategies have been developed by federal and local
governments and health organizations to address this crisis. One of the most significant objectives is to understand the
epidemic through better health surveillance, and machine learning techniques can support this by identifying opioid users at
risk of overdose through the analysis of social media data, as many individuals may avoid direct testing but still share their
experiences online.
Objective: In this study, we take advantage of recent developments in machine learning that allow for insights into patterns of
opioid use and potential risk factors in a less invasive manner using self-reported information available on social platforms.
Methods: This study used YouTube comments posted between December 2020 and March 2024, in which individuals
shared their self-reported experiences of opioid drugs mixed with other substances. We manually annotated our dataset into
multiclass categories, capturing both the positive effects of opioid use, such as pain relief, euphoria, and relaxation, and
negative experiences, including nausea, sadness, and respiratory depression, to provide a comprehensive understanding of
the multifaceted impact of opioids. By analyzing this sentiment, we used 4 state-of-the-art machine learning models, 2 deep
learning models, 3 transformer models, and 1 large language model (GPT-3.5 Turbo) to predict overdose risks to improve
health care response and intervention strategies.
Results: Our proposed methodology (GPT-3.5 Turbo) was highly precise and accurate, helping to automatically identify
sentiment based on the adverse effects of opioid drug combinations and high-risk drug use in YouTube comments. Our
proposed methodology demonstrated the highest achievable F1-score of 0.95 and a 3.26% performance improvement over
traditional machine learning models such as extreme gradient boosting, which demonstrated an F1-score of 0.92.
Conclusions: This study demonstrates the potential of leveraging machine learning and large language models, such as
GPT-3.5 Turbo, to analyze public sentiment surrounding opioid use and its associated risks. By using YouTube comments as
a rich source of self-reported data, the study provides valuable insights into both the positive and negative effects of opioids,
particularly when mixed with other substances. The proposed methodology significantly outperformed traditional models,
contributing to more accurate predictions of overdose risks and enhancing health care responses to the opioid crisis.
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Introduction
Background
Opioid overdose occurs when someone takes an exces-
sive amount of prescribed or illicit drugs, such as heroin
or fentanyl, which can cause potentially life-threatening
symptoms by interacting with receptors in the brain and
nervous system to reduce pain. Chronic pain, one of the
leading causes of disability and overall disease burden
worldwide [1,2], is a significant factor in the increasing use of
opioid drugs mixed with illicit substances, with an estimated
20%-30% of the global population experiencing chronic pain
[3,4]. The annual economic impact of chronic pain ranges
from US $560 to $635 billion in the United States [5-7]. The
challenging nature of chronic pain makes it one of the most
persistent medical issues, presenting various diagnostic and
treatment difficulties [8]. In the pharmacological management
of chronic pain, opioids have long been considered essen-
tial medications for patients. Although their effectiveness in
treating serious pain is generally accepted, the use of opioids
for chronic pain remains controversial due to long-term side
effects such as tolerance and dependence [9,10]. These issues,
along with prescription and misuse, have contributed to a
significant global health crisis known as the opioid crisis [11],
which has resulted in approximately 500,000 overdose deaths
in the United States, with nearly 70,000 fatalities reported in
2020 alone [12].

In recent years, sentiment analysis has attracted expo-
nential interest from researchers. The growing number
of scientific publications, forums, and related conferences
highlights its potential for future development. Social media
platforms such as X (formerly known as Twitter), Facebook,
Instagram, Reddit, and YouTube play a key role in this
expansion, with over 58% of the world’s population actively
sharing their opinions, experiences, and concerns on these
platforms [13]. These platforms provide researchers with
valuable insights into health determinants by allowing the
analysis of lifestyle choices, habits, and personal experiences.
Social media’s role in medical research is profound as it
enables real-time global observations of important clinical
topics, including influenza spread, suicide risk factors, and
substance use trends [14-19].

Recent advances in natural language processing (NLP)
have facilitated large-scale social media data analysis, making
significant contributions to fields such as suicide risk
detection, adverse drug reaction identification, and misin-
formation classification [20-22]. However, there remains
a notable gap in applying key phrase extraction techni-
ques to self-reported health-related content on social media,
particularly within online health communities. The rise of
web-based health care platforms has propelled automatic
sentiment analysis of medical reviews into a new era of
data-driven insights. This method allows researchers to
analyze vast amounts of web-based user-generated data,
uncovering hidden patterns about the side effects of opioid
drugs. These insights are crucial for refining pharmacovigi-
lance programs, ensuring drug safety and effectiveness. Over

time, sentiment analysis in NLP has evolved significantly,
enabling more accurate and meaningful interpretations of user
experiences with medicines [23,24].
Prior Work
Recent years have witnessed the trend of studying opioid
use disorders using social media data such as YouTube
comments, X, and Instagram. Social media platforms have
become essential for analyzing user-reported experiences with
opioid drugs, particularly when mixed with illicit substances,
as they offer valuable insights into drug use behaviors and
potential overdose risks.

Carabot et al [25] used state-of-the-art machine learn-
ing (ML) models on Twitter posts related to opioid drugs.
They collected a dataset from January 1, 2019, to Decem-
ber 31, 2020, focusing on user experiences and perceptions
of these drugs. They gathered a total of 256,218 Twitter
posts. They used preprocessing techniques, and only 27%
of the tweets were filtered out, which shows relevancy;
after preprocessing, they conducted a manual analysis of
7000 tweets using a detailed codebook. They classified users
as patients, health care professionals, or institutions and
distinguished between medical and nonmedical content. The
findings showed that fentanyl was the most discussed opioid,
with patients dominating the conversation, while health care
professionals’ tweets garnered the most engagement.

Swaileh et al [26] explored sentiment analysis in NLP
to improve the understanding of public health and medi-
cation experiences. They used a hybrid model that com-
bined traditional methods with advanced ML. Their proposed
methodology achieved a high accuracy of 99% in senti-
ment classification. Their goal was to improve pharmacovigi-
lance and inform public health initiatives by analyzing user
feedback on health care and medications.

Chenworth et al [27] conducted a study to analyze
public perceptions of methadone and buprenorphine-naloxone
(Suboxone) through Twitter posts. They performed manual
and automatic analyses, identifying common themes such as
access, stigma, and treatment, with limited positive sentiment
about the medications. Despite their proven effectiveness, the
study suggests that public perceptions may contribute to the
underutilization of these treatments for opioid use disorder.

Al-Hadhrami et al [28] explored the performance of
deep learning (DL) techniques including bidirectional long
short-term memory (BiLSTM) and a hybrid BiLSTM
convolutional neural network (CNN) for sentiment analy-
sis of drug-related reviews. They used Global Vectors for
Word Representation (GloVe) word embedding methods and
achieved an accuracy rate of 96%. The results underscore the
enhanced performance of these models in analyzing patient
sentiments, demonstrating the value of DL techniques in this
context.

Chakrapani et al [29] discussed the challenge of analyz-
ing the mindset of patients affected by acute diseases by
introducing a framework that uses a sociomedical dataset
of reviews and feedback. They used preprocessing techni-
ques, n-gram tokenization, and polarity scoring to extract
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sentiments, followed by a probabilistic latent Dirichlet
allocation model for review aggregation. They applied
various ML models and evaluated the performance of the
models in understanding patient perspectives.

Nair et al [30] focused on creating a drug review classi-
fication system to label user reviews into multiple classes,
such as positive, negative, and neutral, by using publicly
available datasets from drugs.com. They applied 3 variants
of the pretrained bidirectional encoder representations from
transformers (BERT) model, namely mBERT, SciBERT,
and BioBERT, to generate embeddings used as features for
various ML classifiers, including decision trees (DTs) and
DL models. Model performance was assessed using precision,
recall, and F1-score metrics.

Gandy et al [31] assessed the efficacy of 3 automa-
ted sentiment analysis tools—VADER, TEXT2DATA, and
LIWC-22—against manually labeled datasets of YouTube
comments related to opioid epidemics. The LIWC-22 model
achieved the highest accuracy with an 88% F1-score, whereas
VADER achieved 83%, and TEXT2DATA achieved 82%.
The results suggest that these models can be effectively
applied to social media analyses.

Although prior studies have used state-of-the-art ML and
NLP models for opioid-related research, they often focused
on basic sentiment classification such as positive and negative
opinions and did not consider detailed discussions about
mixed drug use. Many previous models did not include
the many ways drugs can be mixed or their effects, which
is essential for fully understanding opioid misuse. Unlike
past studies, our research introduces a unique multiclass
methodology with 6 different categories, including a mix
of opioids and other substances. This classification captures
the complexity of real-world drug use, which other studies
may overlook. By using a large language model (LLM),
we can better study and sort these mixed-drug experiences,
detecting subtle feelings and trends that older models cannot.
Our approach does more than just basic sentiment analysis. It
overcomes the weaknesses of past models and gives a clearer,
more complete picture of opioid misuse.
Objective
This study aims to validate a methodology that uses You-
Tube video comments for sentiment analysis, focusing on
instances where people discuss opioid drug use mixed with
other substances, increasing the risk of overdose and adverse
effects. By using advanced NLP techniques and LLMs such
as GPT-3.5 Turbo, this research seeks to uncover hidden
patterns and derive meaningful insights from discussions
about drug use. Although the information shared on social
media platforms can provide valuable insights into individ-
ual experiences, it is important to note that these platforms
do not directly reflect the cause and usage situations in
real-world settings. Despite the high penetration of social
media, the data derived from these sources cannot always be
used to determine the full context of opioid misuse, over-
dose, or adverse effects in the real world. Unlike traditional
studies that focus solely on sentiment classification, our
approach directly contributes to health care by identifying

high-risk behaviors and potential opioid misuse patterns, such
as the combination of opioids with other substances that
significantly increase overdose risk. By analyzing both the
emotional tone and detailed drug use experiences, our work
aims to empower public health organizations with actionable
intelligence to address emerging drug trends proactively and
uncover risk factors linked to the misuse of opioids, includ-
ing adverse physical effects and emotional responses, which
could inform public health interventions. The use of ML, DL,
and LLMs such as GPT-3.5 Turbo is critical for detecting
subtle patterns within large amounts of social media data,
which can be difficult to identify manually. Although social
media platforms do not directly reflect the full context of
opioid misuse or overdose situations in the real world, these
advanced techniques enhance our ability to derive accurate
and actionable insights from online discussions about opioid
misuse, ultimately improving patient outcomes and informing
intervention strategies. Although social media data cannot
fully capture the complexities of real-world usage, these
techniques enable the identification of emerging risks and
behavioral trends that might otherwise go unnoticed. This
approach facilitates faster responses to public health concerns,
enhances community safety, and minimizes reliance on
manual intervention by providing comprehensive, data-driven
analyses.

To achieve these objectives, we developed a meticu-
lously curated, multilabeled corpus, where each comment
was manually annotated to reflect observed adverse effects
related to opioid use. The dataset encompasses 6 distinct
sentiment categories, including both positive experiences (eg,
pain relief, euphoria, relaxation) and negative outcomes (eg,
nausea, sadness, and respiratory depression). The selection of
these 6 categories was driven by a need to capture the full
spectrum of user experiences, both favorable and adverse,
when discussing opioid use. By including both subjective
emotional states and physical effects, we can gain a more
comprehensive understanding of how different opioids impact
individuals. This classification approach also supports the
creation of precise, targeted interventions aimed at improving
health outcomes, as it allows for the identification of both
beneficial and harmful patterns in opioid usage.
Contributions
This paper makes the following contributions to the literature.

We applied the schema to build a comprehensive dataset
for sentiment analysis that contains opioid mixed with illicit
drugs for health care professionals, accurately annotated with
high-quality labels able to identify high-risk behaviors and
develop targeted interventions.

We trained and tested an LLM (GPT-3.5 Turbo) on
YouTube comments where people discuss using opioid drugs
mixed with other substances that can cause death. This
approach provides health care professionals and policymakers
with real-time, data-driven insights into opioid use trends,
enabling better response strategies and prevention measures.
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We conducted a comprehensive series of experiments that
demonstrated that the proposed methodology achieved the
best performance compared to the baseline.

The proposed framework (GPT-3.5 Turbo) demonstrated
an F1-score of 0.95 in multiclass to our dataset. This
represents performance improvements of 3.26% in F1-score
compared to the baseline model (extreme gradient boosting
[XGBoost] demonstrated an F1-score of 0.92).

By bridging the gap between social media sentiment
analysis and health care research, this study highlights how
NLP-driven methodologies can contribute to public health
strategies, improve patient safety, and enhance health care
delivery. However, while NLP models can significantly assist
in trend identification and risk assessment, human oversight
remains crucial in interpreting results and implementing
appropriate public health interventions.

Methods
Overview
This section outlines the methodologies used to create a
robust sentiment analysis system. Initially, the research
design is presented in a descriptive manner, with detailed
explanations provided for each component in the flow
diagram (Figure 1). The methodology includes multiple
phases: (1) construction of dataset, (2) annotation guide-
lines, (3) annotation selection, (4) annotation agreement, (5)
preprocessing and analysis of the data, (6) features extraction,
and (7) application of models and training and testing.

Figure 1. Architecture of proposed solution. DL: deep learning; LLM: large language model; ML: machine learning; TL: transfer learning.
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Construction of Dataset
This section outlines the construction of our dataset for
sentiment analysis related to opioid overdose discussions
on YouTube. First, we selected videos with more than 10
million views that were related to opioid overdose to ensure
that the video had a sufficient number of comments discus-
sing the mixing of opioid drugs with other substances. For
inclusion, we selected videos based on their relevance to
opioid misuse, focusing on videos with clear and significant
discussions of opioid drugs mixed with other substances. We
excluded videos with irrelevant content, off-topic discussions,
or those lacking substantial user comments on opioid misuse
and its adverse effects. For data selection, we chose vid-
eos from 2020 to 2024. One of the reasons for selecting
YouTube comments from this time period was to capture
recent discussions in which individuals shared their fresh
experiences, especially during the COVID-19 pandemic when
opioid misuse surged and individuals turned to social media
more frequently to share their personal experiences. We
used 20 different opioid-related keywords, such as “kratom,”
“fentanyl,” “heroin,” “codeine,” and “buprenorphine,” to
filter the relevant samples and drug occurrences and their
adverse effects as reported by opioid users. Second, we
prepared a code using the YouTube application programming

interface in Python, which allowed us to collect approxi-
mately 300,000 comments from different videos that reflect
self-reported and personal experiences shared by users. For
this study, we selected only English-language videos and
comments. Third, we manually categorized the dataset into
6 sentiment categories based on the adverse effects shared
by the user, ensuring a more accurate and context-sensitive
classification than traditional autoannotated methods. Unlike
automatic annotation techniques, which often struggle to
capture the complexity of user experiences, our manual
categorization process allows for a deeper understanding of
the nuanced nature of opioid use and its associated effects.
By classifying the dataset into sentiment categories, we aim
to develop a robust model capable of understanding both
the sentiment of user concern and the adverse effects they
report. This manual approach ensures high accuracy and
precision, which is crucial for identifying patterns related
to opioid misuse and overdose risks. An example structure
of the dataset, showing sample entries and classifications,
is presented in Table 1 (see annotation guideline section).
Figure 1 illustrates the proposed methodology and design
used in this study, highlighting the contributions of this more
detailed, context-aware classification method.

Table 1. Samples from the dataset.
Comment text Sentiment
I felt this amazing rush of happiness, like everything was perfect for a few hours. I know it’s risky, but nothing else
makes me feel that alive.

Euphoria

The pain was unbearable, so I mixed a little extra with my regular dose. It worked for the pain, but I feel uneasy about it
– I know it’s dangerous.

Pain relief

After mixing opioids with alcohol, I could barely breathe; it was like my chest was weighed down. Scariest experience
of my life.

Respiratory depression

I thought it would help me forget, but all it did was make me feel numb and more alone. It’s not worth the spiral I’m in
now

Sadness

Just a small dose with some weed, and I felt completely at ease, like I didn’t have a care in the world. It’s tempting to
keep doing it, but I worry about the risks

Relaxation

I thought it would help me unwind, but instead, I felt so sick. I could barely keep anything down, and it just wasn’t
worth it

Nausea

Annotation Guidelines
After the collection of data, we accurately classified the
samples related to opioid overdose drugs to gain insights into
public sentiment. Each sample was labeled using predefined
criteria, allowing us to classify based on the effects of
drugs, including positive (pain relief, euphoria, relaxation)
and negative experiences (nausea, sadness, and respiratory
depression). Furthermore, the categorizations of posts are
presented in Table 1 and the annotation rules are listed here:

1. Full comment reading: Mark only after reading the full
comment carefully. Skim-reading will be not allowed.

2. Annotation consistency: Use accurate labels as defined
in these guidelines. Any deviation, such as “Maybe” or
“Unclear,” is not permitted.

3. Data quality check: Annotators must verify their
annotated labels before finalizing as it is a necessary
step to ensure accuracy and consistency.

4. Out-of-scope content: If a YouTube sample is off-topic,
such as spam or irrelevant content, mark it as “Not
applicable” and remove it from the corpus.

5. Pain relief: If a sample mentions opioids or mixing
other substances with opioids providing relief from
physical pain, including chronic pain or injury-related
pain, label it as pain relief.

6. Euphoria: If a sample demonstrates a sense of joy,
bliss, or intense well-being after using opioids or opioid
mixtures, label it as euphoria.

7. Relaxation: If a sample mentions the relaxing, soothing,
or sedative effects of opioids or opioids leading to
relaxation from stress and anxiety, mark it as relaxation.

8. Nausea: Samples that indicate feeling sick or queasy or
vomiting after using opioids or other drugs mixed with
opioids should be marked as nausea.
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9. Sadness: Samples that indicate feelings of hopelessness
or emotional downers linked to opioid use or other
mixtures with opioids are marked as sadness.

10. Respiratory depression: Samples that indicate diffi-
culty breathing or a sense of being unable to breathe
properly, often as a result of opioid use, should be
marked as respiratory depression.

Annotation Selection
Identifying sentiment analysis in multiclass was not an easy
task; it presented significant challenges. Each of these classes
added another layer of complexity, requiring annotators to
carefully interpret and distinguish nuanced information within
the text. This made it crucial to select annotators with
strong analytical skills and attention to detail. To ensure
high-quality labeling for our research, we carefully selected 5
students with strong backgrounds in annotation and ML. The
selected candidates were postgraduate students in computer
science. We assigned 300 comments to each candidate to
label the dataset; separate Google sheets were created for
individuals to record their work, which allowed us to track

and evaluate their performance individually. After reviewing
the results, 3 of the candidates consistently agreed on the
same labels across most comments, demonstrating a high
level of reliability and accuracy. Based on these results,
these candidates were finalized for the full annotation of this
dataset.
Annotation Agreement
During the annotation process, variations in opinion arose
among annotators. It is essential to analyze these inconsisten-
cies effectively. This evaluation was carried out by calculat-
ing the interannotator agreement, which measures the quality
and consistency of the annotation process. For our annotation
procedure, we used the Fleiss κ statistic to determine this
agreement. Fleiss κ is particularly useful when dealing with 3
or more annotators and categorical output labels. In our case,
the value of κ was found to be 0.79, suggesting substantial
agreement between annotators, as it falls within the range of
0.61 to 0.80. Table 2 provides the full interpretation of κ
values.

Table 2. Interpretation of κ values for agreement between annotators.
κ value Interpretation
<0 Less than chance agreement
0.10‐0.20 Slight agreement
0.21‐0.40 Fair agreement
0.41‐0.60 Moderate agreement
0.61‐0.80 Substantial agreement
0.81‐0.99 Almost perfect agreement

Ethical Considerations
This study used secondary data comprising publicly available,
user-generated content collected from Reddit to analyze
public sentiment on opioids mixed with other substances. The
data were obtained from existing, publicly accessible Reddit
posts that do not contain any personally identifiable informa-
tion. All content was anonymized and analyzed in aggregate
to ensure the privacy and confidentiality of individuals.

There was no direct interaction with Reddit users, and no
attempt was made to trace or reidentify individuals. Given
that the study involved only the analysis of publicly availa-
ble data, with no human subject intervention or collection of
private or identifiable information, institutional review board
approval was not required.

Data Preprocessing
YouTube is a video-based social networking platform where
video descriptions and comments often contain URLs,
hashtags, emoticons, misspelled words, internet slang, and
informal grammar expressions. In this context, data prepro-
cessing is crucial to improving text quality, making it suitable
for ML models and enhancing overall model performance,
especially for sentiment analysis. For traditional ML models
such as DTs and XGBoost, we applied standard preprocess-
ing steps, including text normalization by converting all text
to lowercase, removing extra spaces and newline characters,

tokenizing the text into individual words, and filtering out
nonalphanumeric characters. Additionally, stop words were
removed using a predefined list, words shorter than 3
characters were discarded, and lemmatization was applied to
ensure consistency by reducing words to their base forms.
However, for DL models and transformer-based architectures
such as GPT-3.5 Turbo, we avoided unnecessary preprocess-
ing steps like tokenization, stop word removal, and term
frequency-inverse document frequency (TF-IDF) transforma-
tions, as these models are designed to process raw text
input directly using their own internal mechanisms for text
representation. Instead, we only performed minimal cleaning
(removing URLs, special characters, and excessive punctua-
tion) to maintain linguistic integrity while reducing noise.
This ensures that transformer-based models fully leverage
their contextual embeddings, improving sentiment classifica-
tion accuracy while preventing the loss of valuable textual
information.
Data Augmentation
To enhance the performance and robustness of our proposed
models, we used the back translation technique for data
augmentation. For the translation process, we used the Google
Translate application programming interface, which offers
broad language support and high-quality translations. To
handle large volumes of text efficiently, we developed custom
scripts that automated the translation process. After back
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translation, we conducted a manual quality check on a sample
of the augmented data to ensure that the original meaning was
retained and that no significant information was lost during
the translation.
Dataset Statistics
Multimedia Appendix 1 depicts a word cloud comprising
keywords extracted from posts in the dataset related to the
topic of opioid overdose. The word cloud visually highlights
the most frequent terms, emphasizing the critical themes
discussed in the dataset. Multimedia Appendix 2 illustrates
the distribution of labels for each class used in the corpus
for sentiment analysis. The chart visually represents the
frequency of each sentiment class in the dataset. Multimedia
Appendix 3 provides an overview of the text data’s structure.
It shows that the dataset contained a total of 10,129,795
characters and had a vocabulary size of 31,893 unique words.
On average, each sentence had 21.39 words, and each post
contained 5.02 sentences. The average post length was 541.32
characters. Additionally, each word had an average of 4.86
characters. These values give a clear picture of the dataset’s
complexity, showing how detailed and varied the posts are in
terms of sentence and word length.
Feature Extraction
After cleaning the text, the next step was feature extraction,
where we converted text into numerical form for the ML
models. In traditional ML, we used TF-IDF, as shown in
Equations 1 and 2, which assigns importance to words based
on their frequency in a document and rarity across the dataset.
This helps highlight key terms for sentiment analysis. For
DL, we used GloVe and FastText embeddings, as shown
in Equations 3 and 4. GloVe creates fixed vector representa-
tions based on word co-occurrence in large text collections,
capturing meaningful relationships between words. FastText
improves upon this by considering subword information,
which helps in understanding rare and misspelled words,
making the model more robust. For transformer-based models
and LLMs, we used pretrained embeddings from models like
BERT and ChatGPT. These models capture deep contextual
meanings by analyzing entire sentences rather than individual
words. Unlike traditional methods, transformers dynamically
understand context, improving sentiment analysis accuracy by
recognizing complex language patterns.

(1)TF = Number of times term t appears in a documentTotal number of terms in the document      
The inverse document frequency of a term reflects the
inverse proportion of documents that contain that term. Terms
with technical jargon, for example, hold greater significance
compared to words found in only a small percentage of
all documents. The inverse document frequency can be
computed using Equation 2:

(2)IDF = Number of documents in tℎe corpusNumber of documents in tℎe corpus containing term      
TF-IDF can be calculated using Equation 3:

(3)TF − IDF  = TF × IDF
FastText extends Word2Vec by representing words as bags of
character n-grams. The embedding for a word w is calculated
using Equation 4:

(4)Vw = g ∈ G w Vg 
Where:

• A set of character n-grams in the word w.
• Vg is the vector representation of each n-gram g.

This allows FastText to generate embeddings for out-of-
vocabulary words by combining the embeddings of their
character n-grams.

GloVe creates word embeddings based on the co-occur-
rence matrix of words. Equation 5 is derived from the ratio of
co-occurrence probabilities.

(5)Cost = i, j
V f Xi, j ViTVj + bi + bj − log xi, j 2

Where:
• Xi,j is the number of times word j occurs in the context

of word i.
• V is the vocabulary size.
• Vi and Vj are the embeddings for words i and j.
• bi and bj are bias terms for the words.
• f (Xi,j) is a weighting function to downweight the

influence of very frequent words.
Application of Models and Training and
Testing
In this section, we discuss the application of various models
including ML models, DL models, transformer-based models,
and LLMs such as GPT-3.5 Turbo. After feature extraction,
the data were split into training and testing sets. The training
set was processed to train ML algorithms including support
vector machine (SVM), logistic regression (LR), k-nearest
neighbor (KNN), and XGBoost, as well as 2 DL models
(CNNand BiLSTM), 2 pretrained transformer models (BERT
and GPT-2), and 1 LLM (GPT-3.5 Turbo). To accomplish
this objective, we randomly partitioned the dataset into 80%
for training and 20% for testing, as shown in Figure 2, which
illustrates the ML-, DL-, and LLM-based model training
pipeline for multiclass text classification. These approaches
were evaluated using recall, precision, and F1-score to
quantify the performance of the models. We calculated these
metrics using the following equations.
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Figure 2. ML-, DL-, and LLM-based model training pipeline for multiclass text classification. DL: deep learning; LLM: large language model; ML:
machine learning; TL: transfer learning.

Precision: The total number of correct predictions in our
model was retrieved during document retrieval.

Recall: This indicates the classifier’s ability to identify all
relevant instances in the dataset.

F1-score: The F1-score is a metric that combines precision
and recall.

Equation 8 was used for F1-score, while Equations 6, 7,
and 9 were used for precision, recall, and accuracy, respec-
tively:

(6)Precision = TPFP + TP
(7)Recall = TPFN + TP
(8)F1 −  score = 2 ×  Recall  × PrecisionRecall +  Precision 
(9)Accuracy = TP + TNTP + TN + FP + FN

Where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Results
Overview
This section discusses the results derived from the meth-
odology, implementation, and experiments outlined earlier.
For ML models, we used GridSearchCV for hyperparameter
optimization, testing parameters such as regularization (eg,
C and gamma for SVM), penalty terms for LR, and boost-
ing-related settings like learning rate, number of estima-
tors, and maximum tree depth for XGBoost. For KNN, we
tuned parameters like the number of neighbors and weight
functions. In the case of DL models, adjustments were made
to epochs, batch sizes, and learning rates to fine-tune the
BiLSTM and CNN architectures for optimal performance.
For transfer learning models, fine-tuning involved modify-
ing pretrained weights and adapting hyperparameters such
as learning rates, sequence lengths, and transformer-specific
configurations to improve BERT and GPT-2 on the dataset.
Each model’s performance was systematically optimized by
fine-tuning its parameters to maximize its effectiveness. A
comprehensive overview of the hyperparameters and grid
search used in the proposed approach is provided in Table
3.
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Table 3. Optimum values identified for the hyperparameters of each learning approach.
Learning approach and models Hyperparameter Fine tuning pipeline
Large language model: GPT-3.5 Turbo Learning rate, epoch, batch size, seed 2, 3, 29, 1414121048
Transformer: bidirectional encoder representations
from transformers, RoBERTa, crosslingual
language model – RoBERTa

Learning rate, epoch, batch size, optimizer, loss
function

2e-5, 3, 32, AdamW,
CrossEntropyLoss

Machine learning
K-nearest neighbors n_neighbors, weights 5, uniform
Extreme gradient boosting n_estimators, max_depth, learning_rate 100, 6, 0.3
Decision tree random_state, max_depth 42, 10
Logistic regression random_state, max_iter, C, solver 42, 1000, 0.1, liblinear

Deep learning: bidirectional long short-term
memory and convolutional neural networks

learning rate, epoch, embedding_dim, batch size, 0.1, 3, 300, 32

Software and Hardware
Experiments were conducted on a Lenovo laptop powered
by an Intel Core i7, 8th generation processor with 4 cores,
bus speed of 8 gigatransfers/second, 24 GB of RAM, and 1
TB of storage. The operating system used was Windows 10
Pro (Microsoft Corp), which provided a stable environment
for development and execution. To perform the predictive
analysis, Google Colab was selected for programming and
easy access to a Python environment. We used Python version
3.12.4. The Scikit-Learn [32] package was used for ML
models, while TensorFlow [33] and Keras [34] were used for
DL tasks. For transformer-based models, the Hugging Face
Transformers library was used. Model training was performed
on an NVIDIA Tesla T4 GPU with 2560 CUDA cores and 16
GB GDDR6 memory.
Results for ML
In this section, we will explore the performance of sev-
eral traditional ML models applied to sentiment analysis,
specifically focusing on the complex topics of opioid
overdose and drug mixing with other substances. To tackle

this, we used 6 models including LR, KNN, random forest,
and SVM. Each model was evaluated to understand how
well it can detect sentiment in this sensitive area, aiming to
identify patterns and nuances within the data related to drug
use.

Table 4 shows the performance metrics of 4 different ML
models: LR, DT, KNN, and XGBoost. We used 4 differ-
ent evaluation metrics to assess the performance of these
models including precision, recall, F1-score, and accuracy.
Among all models, XGBoost achieved the highest scores
on all metrics (0.92 for all 4 metrics), demonstrating that
it performs exceptionally well in making correct predictions
in our sentiment analysis task. DT follows closely behind,
with 0.87 across the board, showing strong performance just
slightly lower than that of XGBoost. KNN also performed
well, with an F1-score of 0.85, but LR, while decent, lagged
behind with a score of 0.74 in all metrics, suggesting that it
may not be a suitable choice for our sentiment analysis task.
Overall, XGBoost was the clear winner in terms of accuracy
and balanced performance.

Table 4. Results for machine learning models.
Model Precision Recall F1-score Accuracy
Logistic regression 0.74 0.74 0.74 0.74
Decision tree 0.87 0.87 0.87 0.87
K-nearest neighbors 0.85 0.86 0.85 0.86
Extreme gradient boosting 0.92 0.92 0.92 0.92

Results for DL
In text classification tasks, choosing the right model and
word embedding technique is essential for achieving accurate
results. For this analysis, we compared the performance of
2 popular DL models (CNN and BiLSTM) using 2 different
types of word embeddings: FastText and GloVe.

Table 5 compares the performance of different DL models
using FastText and GloVe embeddings. When using FastText,
CNN performs the weakest, with an F1-score of 0.72, while

BiLSTM performs significantly better at 0.91. However,
models trained with GloVe embeddings outperformed those
trained with FastText. The CNN model with GloVe ach-
ieved the highest performance across all metrics (0.94),
followed closely by BiLSTM with 0.93. This suggests that
GloVe embeddings provide richer semantic representations
for this task, leading to better model performance, especially
for CNN. Overall, GloVe-based models outperformed their
FastText counterparts, and CNN with GloVe achieved the
best results.
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Table 5. Results for deep learning models.
Models Precision Recall F1-score Accuracy
FastText: convolutional neural network 0.72 0.72 0.72 0.72
FastText: bidirectional long short-term memory 0.91 0.91 0.91 0.91
Global Vectors for Word Representation: convolutional neural network 0.94 0.94 0.94 0.94
Global Vectors for Word Representation: bidirectional long short-term memory 0.93 0.93 0.93 0.93

Transformer Results
Multimedia Appendix 4 presents the performance com-
parison of 3 transformer-based models—RoBERTa-base,
crosslingual language model (XLM)–RoBERTa-base, and
BERT-base-uncased—across 4 key metrics: precision, recall,
F1-score, and accuracy. The RoBERTa-base model (blue
bars) consistently outperformed the others, achieving a score
of 0.94 in all metrics. The XLM-RoBERTa-base model
(red bars) performed equally well in recall and accuracy
but lagged slightly in precision and F1-score. Meanwhile,
BERT-base-uncased (green bars) had the lowest perform-
ance, with a score of 0.93 across all metrics. Although the
differences are small, they highlight how model architecture
influences classification performance, with RoBERTa-based
models proving to be slightly more effective in this particular
task.

Overall, RoBERTa-base outperformed the other models
with the highest scores across all metrics, making it the most
effective for this task. Although XLM-RoBERTa-base was
close, BERT-base-uncased showed slightly lower perform-
ance.
LLM Results
LLMs have revolutionized the field of artificial intelligence
by enabling machines to understand and generate human-like
text with remarkable accuracy. LLM models are trained on
a large volume of textual data, allowing them to capture
hidden patterns in language, comprehend complex queries,
and produce coherent and contextually relevant responses.
By using the capabilities of LLMs such as GPT-3.5 Turbo,

researchers and developers can unlock innovative solutions,
bridging the gap between human communication and machine
intelligence. To attain this objective, we have used the
power of OpenAI’s model for the sentiment analysis task
and we evaluated its effectiveness using 4 metrics: preci-
sion, recall, accuracy, and F1-score. Multimedia Appendix
5 presents the performance of GPT-3.5 Turbo across the 4
key metrics, all achieving an impressive 0.95. This indicates
that GPT-3.5 Turbo performs exceptionally well in classifi-
cation tasks, likely benefiting from its large-scale pretrain-
ing and contextual understanding. Compared to traditional
ML models or even DL architectures, its high and balanced
performance across all metrics suggests strong generalization
and robustness in text classification.

Overall, GPT-3.5 Turbo excelled, with a perfect balance
across all metrics (0.95), making it a highly effective choice
for text classification tasks.

Table 6 shows the class-wise performance metrics of
our proposed methodology (GPT-3.5 Turbo) on 6 distinct
classes, capturing both positive experiences (ie, pain relief,
euphoria, relaxation) and negative outcomes (ie, nausea,
sadness, respiratory depression), and highlights precision,
recall, F1-score, and support (number of instances per
class). Among the classes, euphoria, nausea, and respiratory
depression showed the highest performance, achieving nearly
perfect scores across all metrics. Euphoria, relaxation, and
pain relief also performed well, with slight variations in
precision and recall. Sadness, however, had the lowest recall
(0.85) and F1-score (0.89), indicating that the model struggled
slightly with detecting this class.

Table 6. Class-wise score for the GPT-3.5 Turbo model.
Class Precision Recall F1-score Support
Euphoria 0.97 0.97 0.97 588
Nausea 0.99 0.99 0.99 601
Pain relief 0.92 0.93 0.92 645
Relaxation 0.92 0.97 0.95 638
Respiratory depression 0.98 1 0.99 628
Sadness 0.94 0.85 0.89 643

Overall, the model performed exceptionally well across most
classes, with nausea and respiratory depression achieving
near-perfect classification. However, sadness had the lowest
recall, suggesting room for improvement in detecting this
category.
Error Analysis
Multimedia Appendix 6 presents the top-performing models
across various learning approaches based on their precision,

recall, accuracy, and F1-score metrics. Among ML techni-
ques, the XGBoost model excelled, with solid precision,
recall, F1-score, and accuracy values of 0.92. In DL, the CNN
model with GloVe embeddings achieved 0.94 in all met-
rics. For transfer learning, the roBERTa-base model matched
this, achieving a score of 0.94 across the board as well.
Finally, GPT-3.5 Turbo (an LLM) took the lead with slightly
higher performance, boasting a precision, recall, F1-score,
and accuracy of 0.95, showing its exceptional ability in
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handling complex tasks. Overall, each approach demonstra-
ted strong performance, but GPT-3.5 Turbo stood out as the
highest achiever.

Although RoBERTa-base achieved solid performance with
an accuracy, precision, recall, and F1-score of 0.94, GPT-3.5
Turbo outperformed it with 0.95 across all metrics. This
1.06% performance improvement shows GPT-3.5’s superior
ability to capture complex, nuanced language patterns and
generalize better to diverse user sentiments related to opioid
use. Although RoBERTa excels in domain-specific tasks,
GPT-3.5 Turbo’s versatility allows it to handle a wider range
of emotional expressions more effectively. As the dataset
size increases, GPT-3.5 Turbo’s performance is expected to
improve further, reinforcing its edge in predicting overdose
risks and understanding nuanced user experiences.

Table 3 summarizes the learning approaches, models,
and hyperparameters used across various ML and DL

techniques. GPT-3.5 Turbo was fine-tuned with a learn-
ing rate of 2, 3 epochs, a batch size of 29, and
seed=1,414,121,048, ensuring effective adaptation. Trans-
former models such as BERT, RoBERTa, and XLM-RoB-
ERTa used a learning rate of 2e-5, 3 epochs, a batch size
of 32, AdamW as the optimizer, and CrossEntropyLoss
for classification tasks. ML models included KNN (n_neigh-
bors=5, weights=‘uniform’), XGBoost (n_estimators=100,
max_depth=6, learning_rate=0.3), DT (random_state=42,
max_depth=10), and LR (random_state=42, max_iter=1000,
C=0.1, solver=‘liblinear’). DL models like BiLSTM and
CNN were trained with a learning rate of 0.1, 3 epochs,
an embedding dimension of 300, and a batch size of 32.
Each model’s hyperparameters were fine-tuned to optimize
performance for specific tasks, ensuring efficient learning and
improved accuracy. Figure 3 shows the confusion matrix of
the proposed model (GPT-3.5 Turbo).

Figure 3. Confusion matrix of the proposed GPT-3.5 Turbo model.
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Discussion
Principal Findings
This study highlights the effectiveness of sentiment analysis
in extracting meaningful insights from self-reported experi-
ences with opioid drugs mixed with illicit substances. By
leveraging YouTube comments as a data source, we were
able to analyze public discourse on opioid use, uncovering
both positive and negative experiences. Our classification
system, comprising 6 sentiment-based categories, provided
a structured approach to understanding the emotional and
physical effects associated with opioid consumption. Notably,
this method allowed us to identify key adverse effects such
as nausea, respiratory depression, and sadness, alongside
reported benefits like pain relief and euphoria.

A significant contribution of this research is the applica-
tion of OpenAI models such as GPT-3.5 Turbo for senti-
ment analysis. The model achieved an F1-score of 0.95
in a multiclass setup, outperforming the baseline XGBoost
model by 3.26%. This improvement underscores the utility of
advanced NLP techniques in analyzing complex, health-rela-
ted discussions. By automating the classification process, our
approach reduces reliance on manual annotation and offers a
scalable solution for monitoring opioid misuse trends. Such
insights can enhance pharmacovigilance efforts, enabling
real-time analysis of user-generated content to support public
health initiatives.
Limitations
Despite its contributions, this study has several limitations.
First, the reliance on YouTube as the primary data source
may not fully capture the diversity of opioid-related discus-
sions across different social media platforms. Platforms such
as X, Facebook, and Reddit have distinct user demograph-
ics and language patterns, which could influence sentiment
classification outcomes. Expanding data collection to multiple
platforms would improve the generalizability of our findings.

Second, the manual annotation process, while aimed
at ensuring accuracy, remains inherently subjective. Var-
iability in human interpretation of comments may intro-
duce inconsistencies in the dataset. Future studies could
explore semisupervised learning techniques or crowd-sourced
annotations to enhance labeling reliability.

Additionally, the 6-class sentiment framework, while
comprehensive, may not capture the full spectrum of
opioid-related experiences. Refining the classification system
to include more granular sentiment categories could provide
deeper insights. Moreover, GPT-3.5 Turbo, despite its
strong performance, exhibits occasional errors in interpret-
ing medical terms and context-specific nuances, which may
impact classification accuracy.

Conclusions and Future Work
This study demonstrates the effectiveness of ML, DL, and
LLMs in analyzing public sentiment surrounding opioid
use mixed with other substances. By manually annotating
YouTube comments into 6 distinct sentiment-based classes
—capturing both positive effects (eg, pain relief, euphoria,
relaxation) and negative experiences (eg, nausea, sadness,
respiratory depression)—we provided a nuanced understand-
ing of opioid-related discussions.

Our proposed methodology, using GPT-3.5 Turbo,
achieved the highest F1-score of 0.95, outperforming
traditional ML models such as XGBoost, which demon-
strated an F1-score of 0.92. This significant improvement
underscores the potential of LLMs in accurately identifying
high-risk opioid use patterns from user-generated content.

By leveraging social media as a real-time source of
self-reported experiences, this approach offers a scalable and
less invasive method for opioid surveillance. The findings
highlight the potential for artificial intelligence–driven tools
to enhance health care interventions and public health
strategies by identifying overdose risk more accurately.
Future research can expand on this work by incorporating
real-time monitoring, larger datasets, and additional lan-
guage models to further improve predictive performance and
intervention strategies.

In future work, we will focus on several key areas.
First, we will expand the dataset to include comments from
multiple social media platforms, such as Reddit, X, and
Facebook, which will enhance the robustness and applica-
bility of the model. Additionally, we plan to expand our
dataset to include multilingual content to capture a broader
spectrum of experiences across different language groups.
Incorporating demographic and geographic metadata could
further refine the analysis, providing insights into regional
and population-specific trends in opioid use.

Second, refining the classification system by incorporat-
ing additional sentiment categories or leveraging hierarchical
classification techniques could improve the granularity of
sentiment detection. Finally, integrating real-time monitoring
capabilities into public health frameworks could facilitate
proactive intervention strategies. By developing automated
tools for detecting emerging opioid-related trends, policymak-
ers and health care professionals could respond more swiftly
to potential risks, ultimately contributing to more effective
opioid crisis management.

Overall, this research underscores the potential of
sentiment analysis in public health surveillance and empha-
sizes the need for ongoing advancements in NLP methodol-
ogies to improve opioid misuse detection and intervention
strategies.
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