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Abstract
Background: As the global population ages, concerns about older drivers are intensifying. Although older drivers are not
inherently more dangerous than other age groups, traditional surveys in Japan reveal persistent negative sentiments toward
them. This discrepancy suggests the importance of analyzing discourse on social media, where public perceptions and societal
attitudes toward older drivers are actively shaped.
Objective: This study aimed to quantify long-term public discourse on older drivers in Japan through Twitter (subsequently
rebranded X), a leading social media platform. The specific objectives were to (1) examine the sentiments toward older drivers
in tweets, (2) identify the textual contents and topics discussed in the tweets, and (3) analyze how sentiments correlate with
various variables.
Methods: We collected Japanese tweets related to older drivers from 2010 to 2022. Each quarter, we (1) applied to the
Japanese version of the Linguistic Inquiry and Word Count dictionary for sentiment analysis, (2) employed 2-layer nonneg-
ative matrix factorization for dynamic topic modeling, and (3) applied correlation analyses to explore the relationships of
sentiments with crash rates, data counts, and topics.
Results: We obtained 2,625,807 tweets from 1,052,976 unique users discussing older drivers. The number of tweets has
steadily increased, with significant peaks in 2016, 2019, and 2021, coinciding with high-profile traffic crashes. Sentiment
analysis revealed a predominance of negative emotions (n=383,520, 62.42%), anger (n=106,767, 17.38%), anxiety (n=114,234,
18.59%), and risk (n=357,311, 58.15%). Topic modeling identified 29 dynamic topics, including those related to driving
licenses, crash events, self-driving technology, and traffic safety. The crash events topic, which increased by 0.28% per year,
showed a strong correlation with negative emotion (r=0.76, P<.001) and risk (r=0.72, P<.001).
Conclusions: This 13-year study quantified public discourse on older drivers using Twitter data, revealing a paradoxical
increase in negative sentiment and perceived risk, despite a decline in the actual crash rate among older drivers. These findings
underscore the importance of reconsidering licensing policies, promoting self-driving systems, and fostering a more balanced
understanding to mitigate undue prejudice and support continued safe mobility for older adults.
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Introduction
As the global population ages, concerns about older drivers
are increasing. The share of the global population aged 70
years or older is projected to rise from 6.4% in 2023 to 11.7%

in 2050 [1]. Japan is one of the most rapidly aging societ-
ies, with 23.6% of its population being 70 years or older in
2023. Concurrently, the proportion of driver’s license holders
among older Japanese people is also increasing, reaching
16.6% for those aged 70 years or older in 2023 [2]. In
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response to their decline in physical and cognitive functions,
as well as tragic traffic crashes involving them, the National
Police Agency of Japan has incrementally tightened licensing
policies for them in 1998, 2002, 2009, 2017, and 2022 [3].

Research on older drivers’ traffic safety frequently
examines their risk of traffic crashes, neurological and
physical impairments, and crash causes. A global meta-
review [4] finds that older drivers have a higher risk of
crashes and injuries even when controlling for travel time
or distance, partly because they experience declines in vision,
cognitive performance, reaction time, and physical ability,
despite their strong adherence to traffic laws. This makes
older drivers a higher-risk group in traffic than younger
drivers, who are more likely to be involved in crashes due
to law violations or careless behavior. In addition to traffic
crashes, studies have also discussed the effects of driving
cessation, such as increased depressive symptoms [5,6] and
reduced quality of life [7]. In Japan, research on older
drivers is a relatively new field [8] and covers a range of
topics, including dangerous driving associated with dementia
[9], qualitative surveys of older drivers and their families
[8,10,11], and discussions on licensing policies [12,13].

Although many studies highlight the risks associated with
older drivers, they are not significantly more dangerous than
other age groups in Japan when considering both their at-fault
crash rate and the harm they cause to others. As shown in
Figure 1, the at-fault crash rate (per 100,000 licensed drivers)
for car and motorcycle drivers aged 70 years or older was
384 in 2023, which was higher than for those in middle age
groups (30‐59 y: 301 and 60‐69 y: 313), but lower than for
those in younger age groups (16‐19 y: 1025 and 20‐29 y:
497) [14]. Furthermore, the rate among those aged 70 years
or older substantially decreased in the past decades from 874
in 2010 to 384 in 2023. It is also noted that their at-fault
fatal crashes tend to result in fewer fatalities for occupants of
other vehicles compared with fatal crashes caused by drivers
in other age groups [15]. These statistics demonstrate that
the risk of traffic crashes and resultant injuries imposed by
older drivers is not as high as perceived, as driving failure
frequencies do not significantly differ between age groups
[4].

Figure 1. Traffic crash rates per 100,000 licensed drivers by year, categorized by age group (16‐29 y, 30‐59 y, 60‐69 y, and 70 y and above).
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Despite the decreasing crash rate, negative sentiments toward
older drivers are still persistent in Japan. According to a
survey by the National Police Agency, 85% (n=1698) of
respondents (balanced by age and sex) perceive older drivers
as dangerous, and 80% (n=1596) believe that licensing for
older drivers should be revised [16]. Such sentiments are
potentially influenced by media reports on older drivers
and their crashes as well as stereotypes about older peo-
ple. Recent studies suggested a negative tone toward older
drivers in news reports [17], an increase in newspaper articles
about them [18], and underreported of their crashes killing
themselves [19]. However, discourse regarding older drivers

in social media has not been explored despite the widespread
use of various social media platforms.

Today, social media plays various roles in formal and
informal communication at individual, organizational, and
societal levels. The number of social media users escalates
globally [20], with nearly 50% of Japan’s population using
Twitter (now X), a leading text-based social media platform
[21]. Social media not only facilitates access to a broad
range of information but also serves as a platform for
public discussion, allowing individuals to express their views,
opinions, and sentiments. As the reliance on online health
information also intensifies [22], research into health-related
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topics on Twitter has expanded to include discussions on
food security [23], type 1 diabetes [24], and various aspects
of COVID-19, such as mask-wearing [25], vaccines [26-28],
and the pandemic [29]. Consequently, applying text min-
ing techniques, frequently employed to quantify the tex-
tual content and sentiment of tweets in these fields, offers
valuable insights to facilitate a direct interpretation of societal
discussions around health-related issues.

Given social media’s impacts on public opinions and
policy-making, gaining insights on older drivers and their
crashes from social media—beyond conventional surveys
[17,30]—is crucial for strategic planning of traffic safety. In
this study, we aimed to (1) examine the sentiments toward
older drivers in tweets, (2) identify the textual contents and

topics discussed in the tweets, and (3) analyze how sentiments
correlate with various variables. To achieve these goals, we
conducted sentiment analysis, topic modeling, and correlation
analysis, using over 2.6 million tweets on older drivers posted
in the past 13 years.

Methods
Study Workflow
Figure 2 illustrates the workflow of this study, covering data
collection and processing, sentiment analysis, topic modeling,
and correlation analysis.

Figure 2. Diagram of the study workflow. Tweets are collected and preprocessed, followed by sentiment analysis, topic modeling, and correlation
analysis. Each figure and table number corresponds to the main text. J-LIWC: Japanese version of the Linguistic Inquiry and Word Count Dictionary;
NMF: nonnegative matrix factorization.
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Data Collection and Processing
We collected tweets about older drivers posted between
January 1, 2010 and December 31, 2022, using the Twitter
application programming interface v2 [31] with Japanese
keywords “(高齢 OR 老人) AND (運転 OR ドライバー)”,
or literally, “(old age OR older people) AND (driving OR
driver).” To ensure the relevance of collected tweets, we
examined the contents in a random sample of 1000 tweets
and determined that 967 tweets pertained to older drivers or
their transportation issues.

As part of text preprocessing, we removed symbols, emojis
[32], URLs, and hashtags (#...), and normalized characters
by converting them to lowercase and half-width forms.
Tweets were then tokenized into words using MeCab [33]
with the mecab-ipadic dictionary, with stopwords removed
(Multimedia Appendix 1) and verbs and adjectives lemmat-
ized. In addition, we consolidated tweets from the same user
within the same quarter by merging their tokenized word
lists into single documents. This approach reduces individ-
ual biases, enables dynamic trend analysis by quarter, and
improves topic modeling accuracy by processing aggregated
and extended textual content [34]. After pooling tweets by

user and quarter, we removed words with an occurrence rate
of less than 0.1% per quarter, resulting in 9287 unique words.
Hereafter, we refer to the collection of quarterly tweets
aggregated by each user as a “document.”
Sentiment Analysis
To clarify the Twitter users’ feelings toward older driv-
ers, we first conducted sentiment analysis using the Japa-
nese version of the Linguistic Inquiry and Word Count
Dictionary (J-LIWC) [35]. Sentiment analysis quantifies the
sentiment expressed in documents, using techniques ranging
from word-based and context-based methods to deep-learn-
ing approaches. We adopted a word-based method for
its interpretability and consistency with topic modeling,
specifically using J-LIWC, which is psychologically validated
and reliable in both English and Japanese.

The J-LIWC includes 69 categories in 4 broad catego-
ries—“psychological processes” (37 categories), “linguistic
processes” (14 categories), “punctuation” (12 categories), and
“other grammar” (6 categories). For this study, we used the
“psychological processes” of the J-LIWC, aligning with our
research objectives. The “psychological processes” consists
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of 10 subcategories, namely “affective processes,” “nega-
tive emotions,” “social processes,” “cognitive processes,”
“perceptual processes,” “biological processes,” “drives,”
“relativity,” “personal concerns,” and “informal language,”

and under these subcategories, there are several further
subcategories, as illustrated in Table 1. Throughout this
paper, we refer to the further subcategories of the J-LIWC
as sentiments.

Table 1. Proportion of documents containing words corresponding to 10 sentiments in the Japanese version of the Linguistic Inquiry and Word Count
Dictionary’s “affective processes,” “negative emotions,” and “drives” within 614,429 documents discussing older drivers posted from 2010 to 2022.
In addition to proportions, results of linear regression (the formula Yt = β0 + β1Xt + ϵt) are represented by β0, β1, R2, and P values.
Subcategory and sentiment Tweets, n (%) β0 β1 R2 P value
Affective processes

Positive emotions 217,300 (35.37) 31.0 0.11 0.154 .004
Negative emotions 383,520 (62.42) 46.1 0.36 0.462 <.001

Negative emotions
Anxiety 114,234 (18.59) 14.0 0.12 0.395 <.001
Anger 106,767 (17.38) 11.0 0.17 0.686 <.001
Sadness 23,609 (3.84) 1.70 0.05 0.230 <.001

Drives
Affiliation 105,984 (17.25) 15.6 0.04 0.049 .120
Achievement 179,969 (29.29) 21.7 0.18 0.416 <.001
Power 213,716 (34.78) 28.1 0.15 0.362 <.001
Reward 105,067 (17.10) 13.1 0.10 0.412 <.001
Risk 357,311 (58.15) 42.8 0.33 0.384 <.001

Topic Modeling
Next, we employed 2 layers of nonnegative matrix factoriza-
tion (NMF) [36], a form of dynamic topic modeling. Topic
modeling aims to extract latent textual data and generate
topic distributions categorized as “static” (ignoring time) and
“dynamic” (incorporating temporal variation) [37,38]. While
many previous studies use latent Dirichlet allocation [39],
it does not account for temporal trends, thus unsuitable for
longitudinal studies. Several models have been developed to
capture topic dynamics over time, such as dynamic topic
model (DTM) [40], which is an extended version of latent
Dirichlet allocation, 2 layers of NMF [35], and BERTopic
[41]. DTM and 2 layers of NMF rely on a bag-of-words
approach, whereas BERTopic uses word embeddings. This
study opted for 2 layers of NMF as it provides a richer set
of top words, higher coherence scores, faster performance
than DTM, and, compared with BERTopic, offers objective
evaluation metrics, enables topic distribution generation for
each document, and eliminates the need for labor-intensive
testing [36,42].

Two layers of NMF is a method for extracting dynamic
topic distributions by applying a 2-stage NMF, an unsuper-
vised dimensionality reduction technique that decomposes
data into nonnegative factors. In the first stage, document-
term matrix At for each time unit (quarter) t undergoes
NMF, producing a “window topic,” which represents topic
distributions within each time unit. In the second stage, all
“window topic”–term matrix B (a combination of all At) are
further decomposed via NMF, resulting in a “dynamic topic,”
which incorporates temporal changes.

Following the previous study [36], we determined the
optimal number of dynamic topics by testing a range between

25 and 90, selecting the one with the highest Topic Coherence
using Word2Vec score [43]. TC-W2V score is defined as
the mean pairwise cosine similarity between term vectors
embedded using the word2vec model [44]. In this study,
we employed the Japanese Social Media Corpus [45] as
a large-scale word2vec model, trained on approximately 2
million Japanese words from social media and web sources
(Multimedia Appendix 1).
Statistical Tests
In each section, we employ simple linear regression to
analyze temporal trends in data counts, sentiments, and
topics. The simple linear regression model is expressed as
follows:

Yt =  β0 + β1Xt + ϵt
where Yt represents the dependent variable (eg, tweet count at
quarter t) and Xt denotes the independent variable (eg, quarter
t). The coefficient β1 indicates the rate of change, while the
intercept β0 represents the baseline value when Xt is zero. The
term ϵt accounts for random fluctuations not explained by the
model. For this analysis, we use the actual data count, the
proportion of documents containing a given sentiment, and
the mean topic proportion per time unit.

In addition, we examine the correlation between senti-
ments and traffic crash rates, data counts, and topics using
Pearson correlation analysis. The correlation coefficient (r) is
computed as follows:
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r = ∑ Xt − X− Yt − Y−∑ Xt − X− 2 ∑ Yt − Y− 2
where Xt (eg, negative emotions at quarter t) and Yt (eg,
tweet count at quarter t) represent the paired values of the
independent and dependent variables, respectively, and X− andY− denote their mean values. A positive r indicates a positive
correlation, while a negative r suggests an inverse relation-
ship.

To quantify the proportion of variance explained, we also
compute the coefficient of determination (R2) for regres-
sion models and the squared correlation coefficient (r2) for
correlation analysis. Significance levels are calculated under
the null hypotheses of β1 = 0 for linear regression and r = 0
for correlation analysis.
Ethical Considerations
This study did not require institutional review board approval
because it is an observational study that used only pub-
licly accessible data and reported aggregate results with no

personal identifiers. To maintain privacy and confidentiality,
all personal identifiers were removed during data processing.
Transparency was maintained throughout the study, with clear
communication of its purpose, methods, and findings.

Results
Summary of Tweet Counts and Users
Our dataset contained 2,625,807 tweets from 1,052,976
unique users, comprising original tweets (n=767,419,
29.25%), retweets (n=1,678,133, 63.91%), replies
(n=171,781, 6.54%), and quoted tweets (n=8474, 0.32%).
To analyze primary opinions or original tweets, we exclu-
ded retweets and eliminated referenced text from quoted
tweets and replies. Figure 3 illustrates the quarterly counts
of original tweets and unique users discussing older drivers
over a 13-year period. There has been a consistent presence
of tweets and users, with a moderate increase over time.
This trend is supported by linear regression (tweet count:β0=−3011.09, β1=832.75, R2=0.256, P<.001; user count: β0
=−1325.86, β1=534.90, R2=0.238, P<.001).

Figure 3. Tweet and user counts related to older drivers by quarter from 2010 to 2022. Black vertical dotted lines indicate the 3 major tweet peaks.
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Since 2016, the number of tweets per quarter has exceeded
10,000, rising to over 20,000 per quarter from 2019 onward.
The highest peak occurred in the second quarter of 2019
(approximately 162,000 tweets), driven by a crash on April
19, 2019, in Higashi-Ikebukuro, Tokyo, where an 87-year-old
man mistakenly stepped on the accelerator, killing a 3-year-
old child and her mother and injuring 9 others [46]. The
second peak, in the fourth quarter of 2016 (approximately
67,000 tweets), coincided with a series of crashes in Tochigi
(November 10, 2016), Tokyo (November 12, 2016), and
Miyazaki (November 13, 2016), where older drivers struck
and killed pedestrians, sparking active public debate about

older drivers [47]. Another significant peak in the fourth
quarter of 2021 (approximately 60,000 tweets) followed a
crash in Osaka, where an 89-year-old man mistakenly stepped
on the accelerator, resulting in pedestrian casualties [48].
Hereinafter, we plot black dotted lines to indicate the 3 major
tweet peaks in each figure.
Sentiments Toward Older Drivers
After processing, our final dataset comprised 614,429
documents posted by 404,689 unique users. Table 1 presents
the proportion of documents containing words associated with
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sentiments in the primary emotional subcategories (“affective
processes” and “negative emotions”) as well as “drives.”

Across all quarters, negative emotions (n=383,520,
62.42%) were more prevalent than positive emotions
(n=217,300, 35.37%) in “affective processes.” Within the
subcategory of “negative emotions,” anxiety (n=114,234,
18.59%) and anger (n=106,767, 17.38%) were more frequent
than sadness (n=23,609, 3.84%). In “drives,” risk (n=357,311,
58.15%) was the most frequently observed sentiment.
Sentiments in other categories, none of which exceeded an
average proportion of 50%, are presented in “S2. Sentiment
analysis Details” in Multimedia Appendix 1. For instance,
family (n=65,069, 10.59%) in “social processes,” insights
(n=261,040, 42.48%) in “cognitive processes,” and health
(n=80,967, 13.18%) in “biological processes” were the most
predominant sentiments in their respective categories.

Temporal trends of sentiments are plotted in Figure
4, with the numeric results of linear regression presented

in Table 1. Regarding “affective processes,” while posi-
tive emotions shows a slight increase (β1=0.11, P=.004),
negative emotions increased more prominently by 0.36%
per quarter (P<.001), rising from approximately 40% to
60%, with spikes aligning with the 3 previously discussed
data peaks, as indicated by black dotted lines. All senti-
ments in “negative emotions” display an increasing trend,
with anxiety (n=114,234, 18.59%, β1=0.12%, P<.001) and
anger (n=106,767, 17.38%, β1=0.17%, P<.001) showing
relatively strong upward trends compared with sadness
(n=23,609, 3.84%, β1=0.05%, P<.001). Regarding “drives,”
risk remained consistently above 40% and showed a
noticeable increase over time (β1=0.33%, P<.001) relative
to other sentiments. Additional analyses can be found in
“S2. Sentiment Analysis Details” in Multimedia Appendix
1, indicating that insights (n=261,040, 42.48%, β1=0.25%,
P<.001) and hear (n=87,281, 14.21%, β1=0.19%, P<.001)
were relatively dominant and exhibited increasing trends.
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Figure 4. The Japanese version of the Linguistic Inquiry and Word Count Dictionary quarterly trends in “affective processes,” “negative emotions,”
and “drives.” Black vertical dotted lines indicate the 3 major tweet peaks as illustrated in Figure 3.
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Topics About Older Drivers
Topic modeling with 2 layers of NMF identified 29 dynamic
topics that achieved the highest coherence score of 0.22 in an

experiment varying the number of topics between 25 and 90
(Multimedia Appendix 1).

We further selected 16 topics that constituted at least
3.5% of all documents on average, naming them based on
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the top-weighted words and representative original tweets
for each topic. Finally, we selected 9 topics where the R2

value exceeded 0.1 in simple linear regression, represented
by a red dashed line, as illustrated in Table 2. The details

of all 16 topics, including typical tweets (in both Japanese
and English), as well as the regression results for the 7 topics
whose R² did not exceed 0.1, are provided in Multimedia
Appendix 1.

Table 2. Description of 9 topics, including topic names, top 10 weighted words, proportions, and results of linear regression (the formulaYt = β0 + β1Xt + ϵt).
Topic name Top 10 weighted words Tweets, n (%) β0 β1 R2 P value
Topic 1:
License surrender

return, license, voluntary,
revoke, system, forcefully,
surrender, certificate,
revocation, discount

43,270 (7.04) 4.37 0.08 0.278 <.001

Topic 2:
Crash events

crash, cause, increase,
traffic, report, death,
decrease, frequent, occur,
prevention

35,396 (5.76) 2.73 0.07 0.358 <.001

Topic 5:
Traffic safety

traffic, safety, campaign,
prevention, bicycle,
drinking, nationwide,
walking, public, child

25,139 (4.09) 6.13 −0.05 0.123 .010

Topic 6:
Ikebukuro incident

runaway, Ikebukuro,
Tokyo, NHK, defendant,
crash, bereaved, family,
memoriala

24,430 (3.98) −0.10 0.09 0.343 <.001

Topic 7:
Self-driving
technology

self-driving, social, Japan,
technology, necessary,
safety, soon, experiment,
popularization,
development

24,235 (3.94) 1.95 0.05 0.151 .004

Topic 8:
Social issues

issue, social, consider, life,
rural, solution, necessary,
difficult, traffic, local

23,935 (3.90) 1.57 0.05 0.294 <.001

Topic 9:
License renewal

renewal, license, course,
take, exam, test, center,
excellent, Emperor, Kobe

23,525 (3.83) 5.83 −0.05 0.126 .010

Topic 10:
Discussing senior
driving

say, bad, hear, go, oneself,
come, same, can, young,
complain

23,511 (3.83) 1.30 0.07 0.402 <.001

Topic 14:
Driving errors

brake, accelerator, step,
mistake, wrong, pedal,
crash, parking, MTb,
operation

21,741 (3.54) 2.23 0.04 0.199 <.001

aThe frequently mentioned name of the individual involved in this crash has been masked to consider ethical concerns.
bMT indicates Manual Transmission, which is one type of vehicle transmission system.

The most prevalent topics were License surrender (n=43,270,
7.04%) and Crash events (n=35,396, 5.76%), followed by
Traffic safety, Ikebukuro incident, Self-driving technology,
Social issues, License renewal, Discussing senior driving,
and Driving errors. Other topics include Thoughts on older
drivers, Prevalent older drivers, and News media (“S3. Topic
Modeling Details” in Multimedia Appendix 1).

Figure 5 illustrates the temporal trends of topic proportions
for 9 topics with a red dashed line, representing the simple
linear regression result for each topic. The proportions of
topics 1 (License surrender, β1=0.08, P<.001), 2 (Crash event,β1=0.07, P<.001), 6 (Ikebukuro incident, β1=0.09, P<.001),
8 (Social issues, β1=0.05, P<.001), 10 (Discussing senior
driving, β1=0.07, P<.001) and 14 (Driving errors, β1=0.04,

P<.001) show consistent increases over time. Notably, topic 1
peaked in 2016, when measures to promote license surrender
in rural areas gained attention. Topics 2 and 8 correspond
to tweet count peaks, while topic 6 coincides specifically
with the fourth quarter of 2019 subsequent periods. Although
less pronounced, topic 7 (Self-driving technology, β1=0.05,
P=.004) also exhibits an increasing trend, whereas topics 5
(Traffic safety, β1=−0.05, P=.01) and 9 (License renewal,β1=−0.05, P=.001) are declining. Additional analysis can
be found in “S3. Topic Modeling Details” in Multimedia
Appendix 1). Notably, News media exhibits topic peaks in the
fourth quarter of 2016, reflecting unique characteristics not
captured by simple linear regression.
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Figure 5. Temporal trends of 9 topic mean proportions, shown as solid blue lines, with red dashed lines representing regression lines. Gray shaded
areas represent 95% CIs for the regression lines. Black vertical dotted lines indicate the 3 major tweet peaks as illustrated in Figure 3.

Correlation Analysis on Sentiments
Table 3 and Table 4 present the results of the correlation
analysis for positive emotions and negative emotions in
“affective processes,” risk in “drives” and anxiety, anger, and
sadness in “negative emotions,” across 4 crash rates, 2 data

counts, and 9 topics. While the correlation analysis for crash
rates among individuals aged more than 70 years and 80 years
is based on yearly data (n=13) due to the limited availabil-
ity of statistical data [14], the other analyses are based on
quarterly data (n=52).

Table 3. Results of the correlation analysis for positive emotions, negative emotions, and risk.

Variables
Positive emotions Negative emotions Risk
R r2 P value R r2 P value R r2 P value

Crash rate (n=13)
  16‐29 –0.747 0.559 .003 –0.750 0.563 .003 –0.702 0.493 .007
  30‐59 –0.714 0.510 .006 –0.784 0.615 .002 –0.739 0.546 .004
  60‐69 –0.687 0.473 .009 –0.799 0.638 .001 –0.754 0.568 .003
  Over 70 –0.712 0.507 .006 –0.787 0.619 .001 –0.744 0.554 .004
Data count (n=52)
  Tweet count 0.317 0.101 .02 0.683 0.466 <.001 0.677 0.459 <.001
  User count 0.311 0.097 .03 0.674 0.454 <.001 0.671 0.450 <.001
Topic (n=52)
  Topic 1 0.039 0.002 .78 0.396 0.157 .004 0.364 0.132 .008
  Topic 2 0.173 0.030 .22 0.761 0.579 <.001 0.719 0.517 <.001
  Topic 5 –0.037 0.001 .79 –0.173 0.030 .220 –0.111 0.012 .430
  Topic 6 0.425 0.180 .002 0.546 0.298 <.001 0.554 0.306 <.001
  Topic 7 0.003 0.000 .98 0.351 0.123 .010 0.381 0.146 .005
  Topic 8 0.270 0.073 .05 0.714 0.510 <.001 0.693 0.480 <.001
  Topic 9 0.217 0.047 .12 –0.496 0.246 <.001 –0.526 0.277 <.001
  Topic 10 0.264 0.069 .06 0.425 0.181 .002 0.365 0.133 .008
  Topic 14 0.177 0.031 .21 0.43 0.185 .001 0.41 0.168 .003
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Table 4. Results of the correlation analysis for anxiety, anger, and sadness.

Variables
Anxiety Anger Sadness
R r2 P value R r2 P value R r2 P value

Crash rate (n=13)
  16‐29 –0.754 0.568 .003 –0.938 0.881 <.001 –0.742 0.550 .004
  30‐59 –0.795 0.631 .001 –0.925 0.856 <.001 –0.744 0.554 .004
  60‐69 –0.818 0.669 <.001 –0.913 0.833 <.001 –0.743 0.551 .004
  Over 70 –0.788 0.620 .001 –0.920 0.847 <.001 –0.735 0.540 .004
Data count (n=52)
  Tweet count 0.409 0.168 .003 0.519 0.269 <.001 0.442 0.196 .001
  User count 0.407 0.166 .003 0.516 0.266 <.001 0.438 0.192 .001
Topic (n=52)
  Topic 1 0.419 0.175 .002 0.297 0.088 .030 0.158 0.025 .260
  Topic 2 0.526 0.277 <.001 0.548 0.300 <.001 0.380 0.144 .005
  Topic 5 –0.121 0.015 .390 –0.186 0.035 .190 –0.132 0.017 .350
  Topic 6 0.375 0.141 .006 0.677 0.459 <.001 0.512 0.262 <.001
  Topic 7 0.291 0.085 .040 0.235 0.055 .090 0.000 0.000 ≥.99
  Topic 8 0.497 0.247 <.001 0.485 0.235 <.001 0.396 0.157 .004
  Topic 9 –0.514 0.264 <.001 –0.386 0.149 .005 –0.028 0.001 .840
  Topic 10 0.385 0.148 .005 0.682 0.465 <.001 0.287 0.082 .040
  Topic 14 0.246 0.061 .080 0.258 0.066 .070 0.366 0.134 .008

For the crash rate of individuals aged between 60 and
69 years, negative emotions (r=−0.80, P=.001) and anxi-
ety (r=−0.82, P<.001) exhibit strong negative correlations,
similar to those observed for individuals aged more than
70 years. Reversely, anger exhibits the strongest negative
correlation with the youngest age group (16-29 y). Regard-
ing the tweet count, negative emotions (r=0.68, P<.001),
risk (r=0.68, P<.001), and anger (r=0.52, P<.001) exhibit
moderate to strong positive correlations, similar to the user
count.

For topics, topics 2 (Crash events, r=0.76, P<.001),
6 (Ikebukuro incident, r=0.55, P<.001), 8 (Social issues,
r=0.71, P<.001), and 9 (License renewal, r=−0.50, P<.001)
are significantly correlated with negative emotions, similar
to risk. Furthermore, while positive emotions do not show
significant correlations with any topic, other sentiments are
correlated with multiple topics: anxiety with topics 2, 8,
and 9; anger with topics 2, 6, 8, and 10 (Discussing senior
driving); and sadness with topic 6.

Discussion
Principal Findings
In this study, we conducted a quantitative analysis of
discourse regarding older drivers from 2010 to 2022 in Japan
using Twitter. The number of tweets and users discussing
older drivers has increased since 2016, with peaks observed
in 2016, 2019, and 2021. Sentiment analysis revealed that
negative emotions were more prevalent and increased over
time compared with positive emotions. In addition, contexts
related to anxiety, anger, and risk were prevalent and showed

an upward trend. Topic modeling identified themes primarily
related to driving licenses, crash events, personal perspec-
tives, and traffic issues. Chronologically, despite decreas-
ing trends in Traffic safety and License renewal, topics
such as Crash events and License surrender are increasing.
Finally, correlation analysis revealed that negative emotions
were negatively correlated with crash rates among older
drivers, positively correlated with tweet counts, and positively
associated with topics such as Crash events and Ikebukuro
incident.

This study quantified issues surrounding older drivers
through Twitter, a leading social media platform, contributing
to advancements in research on public health and ageism.
The function of social media, such as posting and sharing
tweets on any subject along with figures and URLs in Twitter,
enables to prompt the swift dissemination of information [49]
and derive population-level inferences. These have fostered
new fields in public health sectors such as infoveillance
[50], digital epidemiology [51], and digital disease detection
[52]. They also led to an increase in health-related studies in
Japan including hospitals [53], disease information [54], and
eHealth literacy [55]. In addition to public health, the issue of
older drivers has the aspects of ageism, which encompass our
thoughts (stereotypes), emotions (prejudice), and behaviors
(discrimination) toward others based on age [56]. Ageism
toward older people is especially high [57] and can adversely
affect physical and mental health, such as reduced cogni-
tive function [58], shorter life expectancy [59], deteriorated
mental health [60], and increased isolation [61], prompt-
ing initiatives to counteract it [62]. Research on ageism is
seen across multiple domains including health research [63],
mental health services [64], long-term care facilities [65,66],
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workplaces [67,68], and media representations [69-71], with
recent Twitter-based approaches employing thematic [72-76],
descriptive [75,76], computational modeling [77,78], and
quantitative text analyses [79-82]. This study, therefore,
addresses the issues surrounding older drivers from both
public health and ageism perspectives, contributing insights
toward mitigating these challenges.

An abrupt increase in tweet counts sporadically observed
over time is likely attributable to high-profile crashes caused
by older drivers. The highest peak in the second quarter of
2019 corresponding to topic 6 (Ikebukuro incident) coinci-
ded with a crash that occurred in Higashi-Ikebukuro, Tokyo,
drawing significant media and online attention for several
months due to widespread sadness and anger toward the man,
leading to the highest recorded number of driver’s license
surrenders in 2019 [2]. The peak in the fourth quarter of 2016,
associated with topic 8 (Social issues) and topic 11 (News
media) coincided with a series of crashes, and the peak in the
fourth quarter of 2021, followed by a crash in Osaka, led to an
increase in tweets related to topic 2 (Crash events) and topic
14 (Driving errors).

Regarding sentiments, all 3 peaks coincided with peaks
in negative emotions and risk, with average proportions
remaining somewhat higher after the peaks than before, while
positive emotions were less relevant. Thus, the data peaks of
tweets about older drivers are largely facilitated by contexts
of negative emotions and risks, supported by the trends in
their specific crashes aggregated by topics.

The detected topics help us understand how society forms
opinions and perceptions toward older drivers in the long
run. Among the 16 topics accounting for over 3.5%, we
identified 7 increasing topics and 2 decreasing topics. Driving
licenses are discussed in both topics 1 and 9, with public
discourse increasingly focusing on license surrender (topic 1
is rising) rather than renewal (topic 9 is declining), suggest-
ing a social shift toward discouraging older adults from
driving and a potential impact on the number of license
surrenders [2]. Topic 2 (Crash events), including tweets such
as “It seems that crashes involving older drivers are occur-
ring frequently” and “Let’s prevent crashes involving older
drivers,” reflects general discussions about such events, often
triggered by specific incidents, as seen in data peaks in 2016
and 2019. In contrast, topic 6 (Ikebukuro incident) includes
a summary of the Ikebukuro incident and the perpetrator
[46], showing a notable increase in 2019, and topic 14
(Driving errors) highlights that crashes caused by older
drivers often occur due to physical or operational limita-
tions, as shown in meta-review [4]. Over the data collection
period, topic proportions shifted from topic 5 (Traffic safety;
prominent until 2015) and topic 7 (Self-driving technology;
high between 2013 and 2019) to topics 8 (Social issues) and
10 (Discussing senior driving), both of which have recently
increased. These topics express concerns about older drivers
from societal (topic 8) and family (topic 10) perspectives.
Other recurring topics include Thoughts on older drivers,
Prevalent older drivers, and News media, which consistently
appear in this discourse. Notably, topic 11 (News media),
which includes references to major media outlets, showed

a high proportion between 2016 and 2017, suggesting a
potential media overemphasis on older driver–related issues.
(Example tweets for these and other topics not discussed in
the main text are provided in “S3. Topic Modeling Details” in
Multimedia Appendix 1).

Our analysis clarifies the sentiments in public discourse
and their correlations, particularly negative emotion, anxiety,
anger, and risk, which have shown a persistent and increas-
ing trend over time. The proportion of documents expressing
negative emotions rose from approximately 40% to 60%,
accounting for an increase of 1.4% per year. This trend
is strongly positively correlated with data count and with
topics 2 (Crash events), 6 (Ikebukuro incident), and 8 (Social
issues). In contrast, negative emotions are most significantly
and strongly negatively correlated with the crash rates of
older adults (aged 60-69 y and 70+ y; P=.001), although
similar trends are also observed in other age groups. These
suggest that negative perceptions toward older drivers arise
from heightened attention to their crash events and recog-
nition of the issue as a social problem. Similar to nega-
tive emotions, the sentiment of risk increased from 40%
to 60% (1.3% per year), with peaks around 70% in 2016
and 2019. This indicates that public perception includes not
only negativity toward older drivers but also a sense of
danger regarding their driving. Within “negative emotions,”
anxiety and anger, each accounting for approximately 20%,
are more prevalent than sadness. Although they do not show
sharp peaks, both have steadily increased over time. While
their correlation patterns are similar to those of negative
emotions, stronger correlations are observed; the negative
correlation between anxiety and topic 9 (License renewal)
suggests decreasing focus on continued driving, while the
positive correlation between anger and topic 10 (Discus-
sing senior driving) indicates emotional overrepresentation
of older drivers in discourse. Positive emotions show no
significant correlation with any of the variables. Sadness,
however, is correlated with topic 6 (Ikebukuro incident),
suggesting compassion for the mother and child who were
victims in the incident. Overall, driving by older people
is increasingly perceived as negative and risky, and this
perception is influenced by strong negative emotions such
as anxiety and anger, which amplify public discourse on the
topic despite a declining trend in their actual crash rates.

Finally, we present our perspectives. First, negative
stereotypes and prevailing public sentiment toward older
drivers may influence licensing policies [3]. Our analysis
reveals contrasting trends between topics related to license
renewal and license surrender, suggesting a shift in pub-
lic perception toward encouraging older individuals to stop
driving. However, this shift tends to overlook the poten-
tial adverse effects of driving cessation, as noted in pre-
vious studies [5-7]. Although analysis of the relationship
between public discourse and licensing policies remains
limited, it is essential to reconsider current policies that may
discourage older people from driving—such as overly strict
licensing requirements [4,5] and campaigns promoting license
surrender [2]—in favor of approaches that both reduce traffic
crashes and ensure their safety.
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Second, the disproportionate public attention given to
traffic crashes involving older drivers is a significant concern.
Although the anger directed at tragic crashes involving older
drivers is understandable, many older individuals follow
traffic laws and drive responsibly [4], therefore it is unfair
that the entire older population faces negative consequences
as a result. To address this, it is necessary to implement
risk-based licensing policies that focus on high-risk individu-
als, as well as to promote autonomous driving technologies
and infrastructure that support continued safe mobility for
older adults.

Third, public debate following crashes involving older
drivers often centers on specific high-profile incidents rather
than on the overall frequency or statistical context of
such crashes. This may be partly due to media tenden-
cies to sensationalize older driver involvement, as seen in
the temporary increase in topic 11 (News Media). Media
use influences the formation and stability of public opin-
ion clusters [83] and can contribute to heightened public
anxiety during periods of uncertainty, such as pandemics
[84]. Providing the public with a more accurate and bal-
anced understanding of older drivers—including counter-
ing media-driven bias—is crucial to fostering constructive
discourse. This may involve encouraging more responsible
media reporting and promoting public access to objective
information on older driver safety.

In summary, this study offers a long-term analytical
approach that integrates sentiment and textual content,
contributing to research on public discourse related to
aging issues and, more broadly, public health. Our findings
enhance the understanding of societal perceptions and policy
implications surrounding older drivers in Japan and may
inform future discussions on aging societies around the world.
Limitations
Our study had several limitations. First, while Twitter is one
of the most widely used social media platforms in Japan
[85], Twitter users do not necessarily represent the general
population [86]. Furthermore, Twitter provides access only to
tweets from public accounts, deterring extreme or controver-
sial textual content to be tweeted or we might have missed
such tweets because past tweets can be deleted. In addition,
display algorithms were modified around 2011 due to a rapid
increase in Twitter users, resulting in nonstationarities in the
dataset. To mitigate such user biases, several approaches
have been proposed, including evaluating users based on
the authenticity and bias of their engagements [87], and
accounting for population demographics and word ambiguity
[88].

Second, while the keyword (“(高齢 OR 老人) AND (運転
OR ドライバー)” in Japanese) effectively targets discussions
about older drivers, there is still room for refinement. “運転”
(driving) and “ドライバー” (driver) are the words related to
driving, representing specifically older driving by combing
words “高齢” (denoting old age) or “老人” (denoting older
people). Although adding “事故” (crash) was considered, this

word could collect data unrelated to crashes like falls in daily
life, without words related to driving. Other age-related words
like “80 歳のドライバー” (80-year-old drivers) or “祖父”
(grandfather) specify too detailed ages or familial relations,
which are less general and more restrictive, so we did not use
them aligning with our research objectives. In addition, we
found that a small portion (33 out of 1000) of the sampled
tweets were not related to older drivers but represented older
people in nondriving contexts such as riding the bus or
being crash victims. Therefore, while the data from this study
appears to be sufficiently valid, there is a need to refine the
keyword or explore other methods to collect more accurate
data on older drivers.

Third, our methods have room for improvement. Word-
based approaches for sentiment analysis and topic modeling
offer valid and intuitive interpretations for emerging themes
such as older driver–related discourse, but they may not fully
capture contextual nuances such as negations or compound
expressions. Although the J-LIWC dictionary covered 48%
(4458 out of 9287) of the words used in this study—indi-
cating substantial coverage with room for refinement—our
findings remain persuasive, especially when compared with
the Japanese version of the Moral Foundations Dictionary
[89], which covers only 3% (275 words) (“S3. Sentiment
Analysis Details” in Multimedia Appendix 1). Furthermore,
the coherence score for the dynamic topic model was 0.22,
lower than the commonly accepted baseline of 0.36 [36]. This
may be influenced by the linguistic characteristics of Japanese
and the use of a Japanese word2vec model. Finally, as
correlation analysis does not imply causation, more rigorous
statistical testing is needed. Therefore, although our word-
based method using reliable dictionaries offers high interpret-
ability, future work should explore alternative methods—such
as deep-learning–based sentiment analysis or BERTopic for
topic modeling—and incorporate techniques like supervised
machine learning or community detection to gain deeper
insights [24,41,90,91].
Conclusions
Despite the actual decline in crash rates among older drivers,
previous surveys in Japan reveal persistent negative sen-
timents toward them, suggesting the need to understand
discourse on social media, which serves as a platform
for public debate. To quantitatively assess public aware-
ness, we collected and analyzed tweets related to older
drivers. The results revealed an increase in the number
of tweets from 2010 to 2022, with certain peaks aligning
with heightened attention to crashes involving older drivers.
Negative emotions and risk consistently displayed high and
rising levels, primarily correlated with the topic of crash
events. Furthermore, there are diverse topics related to
drivers’ licenses, crash events, and traffic safety. These imply
unfair public recognition toward older drivers, suggesting the
need for reconsidering current license policies, promoting
self-driving systems, and facilitating accurate and balanced
understanding, in order to provide continued safe mobility for
older adults.
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