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Abstract

Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy
makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and
mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also
caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is
on therise. In this context, geosocia media posts (posts with an explicit georeference) have been shown to provide a promising
tool for anticipating moments of potential health care crises. However, previous studies on the early warning capabilities of
geosocia mediadatahave largely been constrained by coarse spatial resolutions or short temporal scopes, with limited understanding
of how local political beliefs may influence these capabilities.

Objective: Thisstudy aimed to assess how the epidemiological early warning capabilities of geosocial mediapostsfor COVID-19
vary over time and across US counties with differing political beliefs.

Methods: We classified US counties into 3 political clusters, democrat, republican, and swing counties, based on voting data
from the last 6 federal election cycles. In these clusters, we analyzed the early warning capabilities of geosocial media posts
across 6 consecutive COVD-19 waves (February 2020-April 2022). We specifically examined the temporal lag between geosocial
media signals and surgesin COVD-19 cases, measuring both the number of days by which the geosocial media signals preceded
the surgesin COVID-19 cases (temporal lag) and the correlation between their respective time series.

Results. The early warning capabilities of geosocial media data differed across political clusters and COVID-19 waves. On
average, geosocial mediaposts preceded COVID-19 cases by 21 daysin republican counties compared with 14.6 daysin democrat
counties and 24.2 days in swing counties. In general, geosocial media posts were preceding COVID-19 casesin 5 out of 6 waves
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across al political clusters. However, we observed a decrease over time in the number of days that posts preceded COVID-19
cases, particularly in democrat and republican counties. Furthermore, adeclinein signal strength and theimpact of trending topics
presented challenges for the reliability of the early warning signals.

Conclusions: Thisstudy providesvaluableinsightsinto the strengths and limitations of geosocial mediadata asan epidemiological
early warning tool, particularly highlighting how they can change across county-level political clusters. Thus, these findings
indicate that future geosocial media based epidemiological early warning systems might benefit from accounting for political
beliefs. In addition, the impact of declining geosocial media signal strength over time and the role of trending topics for signal

reliability in early warning systems need to be assessed in future research.

(IMIR Infodemiology 2025;5:€58539) doi: 10.2196/58539
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Introduction

On March 12, 2020, the World Health Organization (WHO)
declared the novel coronavirus disease COVID-19 a pandemic
[1]. Its high infectiousness and severity posed a great threat to
large populations worldwide, ultimately causing an estimated
15.9 million pandemic-related deaths [2], challenging health
care professionals, hospitals, and authorities alike. Thus,
decision makersaround the world sought to unravel and predict
the spreading dynamics of thisnovel coronavirus. Consequently,
researchers explored various ways of adjusting and improving
existing epidemiological early warning systems, with
complementary internet-based data sources being one such
method to better monitor and anticipate how this new disease
would affect different geographies around the world [3-5].

Multiple studies have aready emphasized the role of geosocial
media data in improving early warning of epidemiological
phenomena. For instance, geosocial media data were used to
improve real-time reporting on diseaseslike Zikaand Ebola[6]
or to enhance the prediction of dengue fever [7]. Accordingly,
various recent examples further emphasize the ability of
geosocial media data for real-time surveillance and early
warning in the context of COVID-19[8,9]. Inthisregard, Kogan
et a [10] observed that in the beginning of the pandemic,
increases in geosocial media activity, among other digital data
sources, preceded surges in COVID-19 cases by 2 to 3 weeks
on state level. Similarly, Zhang et a [11] used geosocial media
postsin alinear regression model to predict COVID-19 signals
on state-level. Yet, an increasing trend in epidemiological
analysis focuses on ever finer spatial scales in the hopes of
gaining a more distinct understanding of infection patterns. In
this regard, Stolerman et a [12] investigated the value of X
posts (formerly known as Twitter) for COVID-19 early warning
on arepresentative subset of US counties. However, the authors
only investigated acomparably small sample of counties (n=97),
raising questions with respect to the generalizability of the
presented results. Thus, in this study, we extended their
investigation on the early warning capabilities of geosocial
mediadatato all US counties.

Furthermore, geosocial media data garnered notable attention
across various fields to answer research questions related to
mental health or public attitudes, during the COVID-19
pandemic [13]. For instance, researchers investigated how
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language in Reddit posts reflected real-world pandemic-driven
eventslikelockdowns, revealing significant psychological shifts
among userswhich coincided with tendenciestoward decreased
analytical thinking [14]. Similarly, Swain et a [15] developed
a machine learning model leveraging geosocial media data to
predict disruptions in mental well-being caused by the
COVID-19 pandemic. Beyond that, researchers explored
geosocia mediausers' attitudesand concernstoward COVID-19
vaccines for the United States and the United Kingdom [16].
They observed that geosocial media derived results correlated
broadly with nationwide surveys. In essence, the previousresults
suggest that geosocial media exchange during the COVID-19
pandemic was likely influenced by real-world public attitudes
and even users’ mental health. Similarly, a variety of studies
indicate that the language used and the topics of interest of
geosocia media users vary based on political beliefs [17-19].
Thisfurther supportsour underlying assumption that differences
in political beliefs are likely to be reflected in geosocial media
behavior, which could, in turn, correspond to differences in
geosocia media’s early warning capabilities for COVID-19
Cases.

However, even before the surge of the COVID-19 pandemic,
researchers observed the emergence of echo chambers when
analyzing pro and antivaccination attitudes on Facebook (Meta),
which in their opinion might have caused further polarization
[20]. In this regard, Howard et a [21] found that X was
particularly prone to misinformation and polarizing content
compared with professionally produced news during the 2016
presidential election. They even found more misinformation
being prevalent in swing states. Such spread of misinformation
and emerging political polarization on geosocial media should
be of further concern for health experts and policy makers. In
particular, since many researchers illustrated that diverging
political beliefs can not only influence exchange on geosocial
media[17-19], but also real-world individual behavior such as
vaccine up-take [22] or the usage of nonpharmaceutical
interventions such as mask wearing [23]. Thisisin line with
previous findings [24], which highlight significant variation
between individualswith different political beliefswith respect
to self-estimated COVID-19 risks, self-reported adherence to
COVID-19 health care measures, and expectations on the future
course of the pandemic. In addition, researchers observed that
US counties that voted in favor of the republican presidential
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candidatein the 2016 el ection, experienced up to 3 times higher
mortality due to COVID-19 during the winter of 2020 [25].

Hence, in essence it can be assumed that individuals may
respond differently on geosocial media to a swiftly politicized
epidemic event like the COVID-19 pandemic [26],
corresponding to their political beliefs. Evidence further suggests
that differencesin political beliefs do not only influence online
and offline behavior, but they might indeed coincide with higher
COVID-19 cases and death rates[25,27,28]. In summary, these
results highlight the need to understand and adjust geosocial
media based early warning systems with respect to political
beliefs. Thus, within the scope of this paper, we seek to answer
the following 2 research questions with a particular focus on
geosocial media posts:

1. How do the early warning capabilities of geosocial media
data change across consecutive epidemiological waves of
COVID-19 cases?

2. What differences across US county-level political clusters
can be observed with respect to geosocial medid's early
warning capabilities for COVID-19 cases?

To explore the early warning capabilities of geosocial media
data, we determined the correlation between geosocial media
posts and COVID-19 cases and the number of days by which
signals in geosocial media data preceded actual COVID-19
cases (temporal lag). Furthermore, we specifically examined
the temporal lag and the correlation in the context of political
clusters based on US county voting data and over the course of
6 consecutive waves of COVID-19 cases.

Methods

Data Collection

We used 2 main data sources in this study. First, we gathered
official dataon confirmed COVD-19 casesinthe United States
and we obtained geolocated posts (Tweets) from the geosocial
media network X. The time frame for which we collected our
data ranges from February 28, 2020, the beginning of the
pandemic in the United States, to April 27, 2022, which denotes
the end of thefirst major Omicron wave that began in November
2021 [29]. Thistime frame covers the main COVID-19 waves,
time periods before and after the availability of vaccines, and
was selected based on retrospective knowledge on the course
of the pandemic. The contiguous United States was chosen as

Textbox 1. Keywords used for relevant post extraction.
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our study area. Furthermore, to gain a more refined
understanding of the underlying spatial patterns, we decided to
use US counties as our finest spatial analysis resolution, on
which we identified politically similar clusters, advancing
previous research that was mostly performed on national or
state levels.

COVID-19 Case Data

We downloaded officially confirmed COVID-19 cases for the
United States in csv format from the not-for-profit public data
aggregator USAFacts [30]. The COVID-19 cases csv file
contained dailly cumulated COVID-19 cases, which we
transformed into daily incidence data. In addition, we applied
a 14-day moving average to account for possible reporting
delays and differing update cycles across states.

Geosocial Media Data

Furthermore, we collected geol ocated posts from the geosocial
medianetwork X through their official application programming
interfaces (APIs) during our investigation time frame [10,12],
when academic access for researchers was still available. In
particular, we used the Twitter REST and Streaming API access
points to gather about 727 million geosocial media posts. The
REST API alowed usto retrieve postsfrom the previous 7 days,
with alimit of 450 requests per 15-minute window. In contrast,
the Streaming API provided a continuous, real-time stream of
posts. For both API endpointswe applied filtersto capture only
posts containing a geolocation. Thus, each collected geosocial
media post includes a geolocation, which can either be the
Global Navigation Satellite System position of the device
through which the post was shared, or a user-defined location.
Furthermore, locations can consist of polygons (eg, city, state
level polygons) or point locations. We excluded geosocia media
posts with polygon or point geometries that were not located
within the county-level geometries, which left us with 242
million posts.

Next, to obtain geosocial media posts that are relevant to the
analysis of COVID-19, we performed keyword filtering on the
remaining 242 million posts located within county geometries.
Therefore, we defined keywords based on the knowledge of
geosocial media and health experts, with the goal to properly
capture geosocial media trends relevant to the COVID-19
pandemic (Textbox 1). For some keywords only their word stem
was used to alow for different variations of the word to be
detected.

COVID-19 keywords:

covid, corona, sarscov, sars-cov, sars, epidemic, pandemic, influenza, virus, viral, infect, spread, 2019-ncov, Delta variant, Omicron, HIN1, H3N2,
Wuhan, sickness, transmission, contagio, IlIness, outbreak, super spread, incubation, quarantine, lockdown, vaccin, fever, cough, headache, fatigue,
body aches, loss of taste, loss of smell, no smell, no taste, respirator, face mask, masks.

After the keyword extraction, the posts were aggregated on US
county-level and a 14-day moving average was applied. Finally,
to cope with differing amounts of geosocial media posts over
time and space, we normalized the amount of relevant filtered
geosocia media posts over the amount of all geosocial media
posts on county level. In the remainder of this study, we solely
used thisratio, that is, the proportion of relevant posts over all
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posts per county. Thisalows usto account for spatially clustered
population and post density. In total, the semantic filtering
procedure left us with 3.3 million relevant posts.

Political Clusters
To examinethe differences between the various political beliefs,
we based our analysis on voting data from the last 6 US
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presidential elections. The voting data were obtained from the
Harvard Dataverse [31]. We classified US counties into 3
different clusters depending on their historical vote share for
either the republican or the democrat party. In the political
sciencesliterature, swing states are traditionally defined through
a variety of quantitative and qualitative indicators. However,
most of these definitions such asthe bellwether status of a state
[32], or it being perceived as abattleground [32], are not directly
transferable to county-level analysis. Thus, we decided to base
the classification into republican, democrat, or swing county

Arifi et a

clusters, on the so-called flippability of acounty [32]. We chose
to assessthe flippability of acounty onitslast 6 federal election
cycles. Concretely, we classified a county as belonging to a
specific party, if said party had won at least 5 consecutive
electionsin the last 6 elections cycles. All other counties were
considered as flipping between political parties and thus
classified as swing counties. This division yielded political
clusters, each of which representing approximately onethird of
the US population (Figure 1).

Figure 1. Geospatia distribution of political belief clusters on county level based on the last 6 election cycles.
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Defining COVID-19 Waves

We split the COVID-19 cases time series into smaller time
frames, to captureindividual epidemiological waves. However,
there exist multiple approaches to define epidemic waves
ranging from statistical methods using, for instance, exponential
growth [10,33] or the effective reproduction number R[12,34].
In contrast, other authorstried to identify statistics and guiding
principles on the duration of COVID-19 waves based on
empirical data[35]. Nevertheless, all these approaches are based
on strong assumptions and subjective definitions on what
thresholds characterize an epidemic wave. Thus, similarly to
[35], we based our definition of COVID-19 waves on a
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rule-based approach using thelocal minimaon a21-day moving
average of the COVID-19 cases, which was informed through
retrospective knowledge on the course of the pandemic.

We defined these time frames based on COVID-19 cases for
the entire United States, rather than defining them individually
for each political cluster. Furthermore, our procedure yielded
7 different time frames (Figure 2). Nonetheless, these 7 time
frames did not accurately reflect al epidemic waves. In
particular, the wave ranging roughly from October 2020 to April
2021, was split into 2. As aresult, we decided to combine the
original time frames 3 and 4 into 1 epidemic wave, which left
us with 6 epidemic waves in total. This decision enabled us to
capture the epidemic waves more accurately (Figure 2).
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Figure2. COVID-19 case waves for the entire US primarily defined through local minima.
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Early Warning Capabilities

Finally, we quantified the early warning capabilities separately
for each of the epidemic waves. We defined early warning
capabilitiestwofold: (1) asthe Pearson correlation between the
time series of COVID-19 related geosocial media posts and
COVID-19 cases, and (2) the number of days by which geosocial
media posts preceded COVID-19 cases. However, the more
important measure for early warning isthe correlation between
the 2 time series. Put differently, thismeansthat if the temporal
lag is high, however a correlation close to zero is present, it is
obviously not reasonable to attribute any early warning
capabilities to geosocial media data.

Furthermore, to identify the maximal correlation and the
corresponding tempora lag, we shifted the geosocial media
posts time series between 7 and 42 days into the future to
determine the highest possible early warning capabilities. This
procedure is repeated for each individual political cluster and
epidemic wave, respectively. The decision to investigate a
temporal lag between 7 and 42 days into the future was based
on previousresults[12], in which an early warning model, using,
among others, geosocial media data, was able to predict
COVID-19 cases between 1 and 6 weeks in advance.

Ethical Consider ations

The study was carried out in accordance with the Declaration
of Helsinki and with the ethical regulationsin place at the Paris
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Lodron University of Salzburg, and complies with the General
Data Protection Regulation legislation of the European Union.
We only used publicly available data, which were collected in
accordancewith theterms of service of the respective geosocial
media platform X at the time of data collection. Furthermore,
no identifiable information was reveaded in this study.
Specifically, the user-provided geographic locations and
semantic content were spatially aggregated to ensure user
privacy and anonymity. Thus, we did not need to seek ethical
approval from our institution for this study.

Results

Democrat Counties

Figure 3 depicts the Pearson correlation for different temporal
lags between the time series of COVID-19 cases and geosocial
media posts in democrat counties. In particular, the y-axis
represents the individual waves of COVID-19 cases as
introduced in Figure 2, while the x-axis denotes the number of
days the posts time series was shifted into the future. The
coloring of individual windows reflects the Pearson correlation
between COVID-19 cases and the shifted posts time series.
Furthermore, Figure 4 illustrates the corresponding COVID-19
cases, the post time series and the post time series shifted by
the correlation maximizing temporal lag for each individual
epidemic wave.
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Figure 3. Depicting the Pearson correlation between COVID-19 cases and geosocial media post time series for each epidemiological wave when
stepwise shifting the geosocial media post time seriesinto the future for democrat counties.
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Figure 4. Depicting COVID-19 cases and the geosocial media posts time series and the shifted geosocial media posts time series across individual
epidemic waves for democrat counties.
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Theresultsfor democrat countiesin Figure 3 indicate the highest
Pearson correlations between posts and COVID-19 cases time
seriesin 5 out of 6 epidemic waves, for a shift of 7 to 21 days
(time frames 1, 2 and 4-6). For the same 5-time frames, the
Pearson correl ations ranged between 0.91 to 0.98. Furthermore,
Figures 3 and 4 suggest that only for time frames 1, 2 and 4-6,
geosocial mediadataexhibited actual early warning capabilities.
For these time frames, signalsin COVID-19 cases were clearly
preceded by signalsin X data, while for time frame 3 no clear
early warning signal in geosocial media data was apparent.
Nevertheless, in the beginning of the pandemic (time frames 1
and 2) geosocial media posts showcased a clear increase up to
21 (time frame 1) and 14 days (time frame 2) ahead increases
in COVID-19 infections, with Pearson correlations of 0.96 and
0.91. In addition, the COVID-19 wave from mid of July 2021
to the end of November 2021 (time frame 5) was reflected in
geosocia media posts up to 17 days earlier than an increase in
COVID-19 cases, with a Pearson correlation of 0.93. Also, the
Omicron wave (timeframe 6) starting in mid of November 2021
[29] was accurately reflected 14 daysin advancein the geosocial
media time series (Pearson correlation of 0.98). Beyond that,
Figure4 clearly illustratesthat the ratio of geosocial mediaposts
related to COVID-19 decreased significantly over the course
of the pandemic. Specifically, the percentage of relevant

Arifi et &

geosocial mediapostsgradually decreased from 5.7% at its peak
in thefirst time frame, to 1.5% in the last time frame.

Republican Counties

Figure 5 illustrates for the republican counties that in 5 out of
6 time framesthe post time series exhibited the highest Pearson
correlation with the COVID-19 cases 7 to 38 days ahead of time
(timeframes 1, 2, and 4-6). Furthermore, for these time frames
the Pearson correl ations between posts shifted 7 to 38 daysinto
the future and COVID-19 cases were between 0.74 and 0.97.
Furthermore, Figure 6 showcases that for republican counties,
early warning signalsin geosocial mediaposts could be observed
for time frames 1, 2 and 4-6. Similarly to the democrat county
cluster, the COVID-19 cases wave in time frame 3 was not
captured in advance by the geosocial media time series. The
fact that all time frames besides time frame 3, lend themselves
for early warning is also consistent with the results for the
democrat counties. Furthermore, it appearsthat in the republican
counties, geosocial media data preceded COVID-19 casestime
series afew days more in advance. On average over al 5time
frames for which we attest early warning capabilities (time
frames 1, 2, and 4-6), the mean temporal lag in democrat
countiesis 14.6 days (average correlation 0.94) and for 21 days
republican counties (average correlation 0.9). Furthermore, it
appears that the ratio of relevant posts decreased over time for
republican counties from roughly about 5.3% to 0.9%.

Figure 5. Depicting the Pearson correlation between COVID-19 cases and geosocial media post time series for each epidemiological wave when
stepwise shifting the geosocial media post time series into the future for republican counties.
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Figure 6. Depicting COVID-19 cases and the geosocial media posts time series and the shifted geosocial media posts time series across individual

epidemic waves for republican counties.
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Swing Counties

Figure 7 illustrates for swing counties that shifting the posts
time series between 7 and 37 days into the future achieved the
highest correlation for al time frames. Furthermore, for al time
frames the maximal Pearson correlations between geosocial
media posts and COVID-19 cases ranged between 0.52 and
0.96. Beyond that, Figure 8 shows that the time frames 1, 2 and
4-6 exhibited clear early warning signals in geosocial media
data ahead increases in COVID-19 cases. Similarly to the
republican and demacrat counties, the COVID-19 waveintime
frame 3 wasnot clearly captured in advance by geosocial media
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data. However, similar, to republican counties, Figure 8
showcasesfor swing countiesthat there actually existed asignal
in geosocial media data which is in line with the COVID-19
data in time frame 3. Nevertheless, the actual early warning
capabilities are till limited due to noise in the signa which
coincides with the COVID-19 infection of former President
Donald Trump. Overal, the posts time series preceded
COVID-19 cases in swing counties across al time frames,
excluding thethird, on average by 24.2 days. Also, theintensity
with which geosocia mediadata appearsto precede COVID-19
waves clearly decreased for swing counties over the course of
the pandemic (from 5.6% to 1.1%).
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Figure 7. Depicting the Pearson correlation between COVID-19 cases and geosocial media post time series for each epidemiological wave when
stepwi se shifting the geosocial media post time series into the future for swing counties.
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Discussion

Principal Findings

The results of this study highlight how a deeper understanding
of the relationship between COVID-19—elated geosocial media
dataand confirmed COVID-19 cases, across politically distinct
geographies, may help improve epidemiological early warning
systems. Specifically, our analysis confirmed and expanded
previous findings on the use of geosocial media posts as early
indicators of disease activity [8-10,12]. However, we observed
strong differences in the early warning capability of geosocial
mediadataacross different epidemiol ogical waves. For example,
geosocia mediadatawere unableto reliably anticipate thethird
major COVID-19 wave, September 2020 to April 10, 2021
(time frame 3), across al political clusters. After significantly
high COVD-19-related engagement on geosocial mediain the
first wave, it appears that the geosocial media signal lost some
of its sensitivity in the third wave. The only event clearly
detectable in COVID-19—elated geosocial media posts in the
third time frame is the COVID-19 infection of the former
President Donald Trump in October 2020. The significance of
this event might have reduced the sensitivity of the geosocial
media users toward an increase in COVID-19 symptoms and
infections. The reaction signal to this event was particularly
visible in the republican and swing county clusters, while the
democrat countiesonly registered aminor increasein geosocial
media posts coinciding with the COVID-19 infection of
President Trump. This further highlights how susceptible
geosocia media data can be to palitically charged trending
topics and how these topics of interest might differ across
political clusters. Thisisa so inlinewith previous findings that
the topics geosocial media users engage with and the language
they use can differ depending on political beliefs[17-19]. Thus,
we hypothesize that it might be key to identify different sets of
keywords related to political beliefs and resulting trending
topics, to capture geosocial mediasignals more accurately across
political clusters. Therefore, future research should explore the
influence of different geosocial media topics on early warning
capabilities across political clusters and how such topics might
change over time.

Furthermore, the findings of this study illustrate differencesin
the early warning capabilities of geosocial media posts for
COVID-19 cases across countieswith diverging politica beliefs.
Thisis particularly true for the number of days that geosocial
media posts precede COVID-19 cases (temporal lag) and the
Pearson correlation between these 2 time series for republican
and democrat counties. For instance, geosocial media posts
appear to anticipate COVID-19 cases in republican counties
(21 days) on average 6.4 days earlier than in democrat counties
(14.6 days). This difference in temporal lag might partly be
caused by varying population densities between democrat and
republican counties. In less densely populated republican
counties [36], infection transmission might be dower [37],
which could lead to a higher temporal lag between the onset of
COVID-19 symptoms being observed and shared on geosocial
media, to the eventual pesk of infections in that region.
However, it remains beyond the scope of this study to
substantiate the actual underlying mechanisms which might
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cause these observed differences in early warning capability
between political clusters. Despite that, the results of this study
clearly emphasize the need to account for political beliefs in
epidemiological early warning systems using geosocial media
data. Neverthel ess, the precise methodol ogy to integrate political
beliefs into real-time geosocia media-based early warning
models remains the subject of future research.

The psychological effects of public health measures, such as
lockdowns, might offer another explanation for the observed
differences in early warning capabilities of geosocial media
data across political clusters. These effects may be connected
to the fact that public health measures were implemented and
suspended at different points in time across political
administrative areas. In this regard, Pettersen et al [38]
associated more stringent public health and quarantine measures
with increased mental distress in adults in Norway. Similarly,
Ferwana and Varshney [39] observed a significant increase in
visits to mental health facilities during the 2020 lockdown
periodsin the United States. While Ashokkumar and Pennebaker
[14] even reported drops in analytical thinking and shiftsin the
emotional states of Reddit users coinciding with the start of
lockdowns. Hence, it might be the case that the varying timing
of public health measures across political regions caused various
psychological effects, manifesting in changes of geosocial media
behavior. However, our findings do not sufficiently verify this
hypothesis. Although numerous studies have explored the
psychological effectsof public health measures, future research
should focus on how these effects might influence the early
warning capabilities of geosocial mediadata acrossthe political
spectrum.

In addition, we aso found a clear decrease in the number of
days with which geosocial media posts preceded COVID-19
casesand in the strength of the geosocial mediapost signal over
time. Interestingly, yet to be explained, the decreasein temporal
lag appears to be less pronounced in republican and swing
counties. Nonetheless, this overall phenomenon might be caused
by some sort of geosocial media and emotional COVID-19
fatigue. The association between self-reported depression
symptoms and geosocia media usage [40], alongside potential
factors contributing to social mediafatigue[41-43] have already
been explored in the context of the COVID-19 pandemic. For
instance, recent findings by Li et a [43] indicate a direct
relationship between social media overload during the
COVID-19 pandemic and increased anxiety. Similarly, Sunand
Lee[44] abservethat COVID-19 information overload on social
media directly contributes to fatigue toward pandemic related
messages. Nevertheless, it remains beyond the scope of this
study to substantiate whether the observed decreasing strength
of the geosocial media post signal and temporal lag are robust
and attributable to some form of geosocial mediaor COVID-19
fatigue. However, based on our observations, we advise caution,
as the epidemiological early warning capabilities of geosocial
media appear to change over time and depending on prevailing
political beliefs. In this regard, it remains the task of future
research to develop geosocial media-based early warning
approaches, which can account for decreasing signal strength
over time.
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Furthermore, Howard et al [21] observed varying levels of
misinformation and thus topics of interest, across states with
different political beliefs. Interestingly, they found the highest
rates of misinformation occurring in swing states. This is
particularly noteworthy, as we found geosocial media data to
be highly capable for early epidemiological warning in swing
counties. Specifically, the average temporal lag of 24.2 days
over al time frames in which we observed the highest early
warning capabilitiesfor swing counties, while mostly achieving
high correlations (average correlation over all time frameswith
early warning capabilities 0.88). Thus, concluding from Howard
et al [21] and our findings, it appears that it might not be the
quality or factual correctness of the shared information on
geosocia media that warrants its value for early warning
purposes. Nevertheless, future research needsto further validate
these findings in the context of different countries and their
political ramifications as they might influence the relevance of
shared information quality and factual correctness for
epidemiological early warning capability.

Data and M ethods

We acknowledge that using asimplelinear correlation measure
might not always reflect the actual similarity between time series
accurately. However, in preliminary analysis we also used
different nonlinear correlation measures, which yielded only
neglectable differencesin the actual results. In addition, we also
tested more advanced time series matching algorithms such as
dynamic timewarping [45], the Fréchet distance [46], or mutual
information [47]. Nevertheless, neither nonlinear correlation
measures nor more advanced comparison agorithms
outperformed conventional linear correlation measures for most
of our analyses. We evaluated the performance of these different
methods in their ability to match the peaks and onsets of
geosocia mediasignalsand COVID-19 cases. Nonethel ess, we
acknowledge that the alignment of peaks and onsets is not
always feasible, as the time it takes from the onset to the peak
may vary between geosocial media signals and COVID-19
cases. As a result, for some epidemic waves the determined
temporal lag might not reflect the actual real-world early
warning capabilities of geosocial media data. Despite that, our
main objectivein this study was not to assess the exact temporal
lag and correlations, but rather to provide an algorithmic way
to compare the early warning capabilities of geosocial media
data across political clusters.

In addition, there is a need to discuss the definition of
epidemiological waves based on COVID-19 cases of the entire
United States as one might argue that this decision might
potentially have caused the observed variations in the number
of days and the correlation between the geosocial media and
the COVID-19 cases time series. The reason for thisis that the
COVID-19 waves can have different starting points and
intensities across states [48] and as our results show also across
political clusters (Figures 4, 6, and 8). Therefore, it might appear
reasonable to assume that variation in the starting points and
intensities caused the underlying observed differences in
temporal lag and correlation between geosocial mediapostsand
COVID-19 casesacross political clusters. However, upon testing
this hypothesis by defining COVID-19 waves individually for
each political cluster, the fundamenta results of our study
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remained unchanged. Although minor discrepancies were
present in the temporal lag (primarily ranging from 1-2 days)
and the correlations between COVID-19 cases and geosocial
media posts, their differences persisted across political clusters
and time frames in a similar manner. For example, republican
counties still exhibited on average a higher temporal lag than
democratic counties and the decrease in geosocial mediasignals
was also still prevalent across political clusters.

In addition, it isimportant to consider the choice of keywords
used for our analysis, as they strongly influence the observed
results. One might argue that some keywords relevant to the
discourse related to the COVID-19 pandemic were left out.
However, in this analysis we mainly focused on gathering less
polarized keywords, topics, and hashtags. The reason for this
is that certain words, topics and hashtags were predominantly
used by 1 palitical faction[17,18], which might indeed introduce
biasinto thefinal comparison between early warning capabilities
across political clusters from the start. Concretely, keywords
used predominantly in republican countiesand lessin democrat
counties might directly influence differences in early warning
capability across political clusters. Therefore, we decided to
use a condensed set of keywords, which wasto our knowledge
mostly not inherently politically charged or biased.

Furthermore, we acknowledge that some keywords which we
used in the semantic filtering process of the geosocia media
posts, might not be only COVID-19 specific. However, we
argue that for most words there exists a baseline signal of how
often these words are being used. Therefore, our underlying
assumption isthat areal-world epidemiological event causes a
significant spike in the usage of relevant keywords. Indeed, our
results confirmed this assumption. We observed a baseline
fluctuation in geosocial media posts and significant spikes in
filtered posts, which in most cases preceded COVID-19 cases.

We aso tried to improve the semantic filtering by leveraging
machine learning approaches such as BERTopic or Latent
Dirichlet Allocation [49,50]. However, due to performance
issues with our large dataset (600+ GB) and based on the
insufficient results for subsample experiments, we decided to
stick to traditional keyword filtering. Nevertheless, in future
work large language models [51] might be a possibility to
improve the process of identifying relevant geosocial media
posts.

Limitations

The main limitation of this study stems from its retrospective
nature. Our findings, while insightful for the past pandemic,
may not be directly transferableto future epidemiological events.
This limitation is partly due to the unpredictable nature of
political polarization. Specificaly, it is inherently difficult to
predict whether atopic will become palitically charged and, as
a result, be discussed differently on sociad media across
geographies with diverging political beliefs. In addition, social
media behavior itself isinfluenced by various dynamic factors,
for instance platform algorithms [52] or changing governance
structures, which affect public engagement [53], all of which
may differ significantly across social media platforms, future
epidemiological events, and national borders. Although our
study revealed differencesin the epidemiological early warning
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capabilities of geosocia media data across US county-level
political clusters, these results should be treated with caution
when considering future-use cases.

Conclusion

Our results confirmed the findings of previous research
[9,10,12], demonstrating that geosocial mediadatacanimprove
epidemiological early warning for consecutive waves of
COVID-19 cases. In addition, we expand the existing literature
by showing that the early warning capabilities of geosocial
media data vary across US county clusters with differing
political beliefs. For instance, geosocia media posts in
republican counties (21 days) tend to precede increases in
COVID-19 cases on average about 6.4 days earlier than in
democrat counties (14.6 days). We hypothesize that this
discrepancy intemporal lag between the geosocial mediasignal
and the COVID-19 cases may stem from differences in the
adoption of public health measures or population density
variations acrossregions. |n addition, we observed that the early
warning capabilities of geosocial media data can be mitigated
due to its susceptibility to a shift in trending topics and a
decrease in signal strength over time.

Arifi et &

Based on our findings, we would recommend that policy makers
and researchers enhance and further investigate real-time
geosocial media monitoring capabilities to improve
epidemiological early warning systems. In addition, our findings
suggest that it could be particularly beneficial for such systems
to account for political beliefs prevalent across finer spatial
scales such as county-level, given their potential to impact the
early warning capabilities of geosocial media signals.
Furthermore, since our results clearly highlight the value of
geosocial media data for epidemiological early warning, we
strongly encourage social mediacompaniesto grant researchers
accessto their data. Furthermore, future research should examine
the early warning capabilities of different geosocial mediatopics
specifictoregional political beliefsand assessthe transferability
of our findings to other countries with different political
environments. Furthermore, investigating the role of political
communication strategies and potential improvementsto social
mediaalgorithmsto mitigate political polarization could enhance
our understanding of how geosocial mediadatacan beleveraged
for future epidemiological events.
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