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Abstract

Background: Since the onset of the COVID-19 pandemic, there has been a global effort to develop vaccines that protect against
COVID-19. Individuals who are fully vaccinated are far less likely to contract and therefore transmit the virus to others. Researchers
have found that the internet and social media both play a role in shaping personal choices about vaccinations.

Objective: This study aims to determine whether supplementing COVID-19 vaccine uptake forecast models with the attitudes
found in tweets improves over baseline models that only use historical vaccination data.

Methods: Daily COVID-19 vaccination data at the county level was collected for the January 2021 to May 2021 study period.
Twitter’s streaming application programming interface was used to collect COVID-19 vaccine tweets during this same period.
Several autoregressive integrated moving average models were executed to predict the vaccine uptake rate using only historical
data (baseline autoregressive integrated moving average) and individual Twitter-derived features (autoregressive integrated
moving average exogenous variable model).

Results: In this study, we found that supplementing baseline forecast models with both historical vaccination data and COVID-19
vaccine attitudes found in tweets reduced root mean square error by as much as 83%.

Conclusions: Developing a predictive tool for vaccination uptake in the United States will empower public health researchers
and decisionmakers to design targeted vaccination campaigns in hopes of achieving the vaccination threshold required for the
United States to reach widespread population protection.

(JMIR Infodemiology 2023;3:e43703) doi: 10.2196/43703
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Introduction

Background
Since the onset of the COVID-19 pandemic, there has been a
global effort to develop vaccines that protect against COVID-19.
Individuals who are fully vaccinated are far less likely to
contract and therefore transmit the virus to others [1]. Up until

recently, public health experts have stressed the importance of
achieving a numerical threshold of herd immunity, but this is
only possible if a significant proportion of the population is
fully vaccinated. More recent research suggests that the
traditional concept of herd immunity may not apply to
COVID-19 [2]. Instead, the goal is to increase vaccination
uptake to optimize population protection without prohibitive
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restrictions on our daily lives [3]. Accurately forecasting
vaccination uptake allows policymakers and researchers to
evaluate how close we are to achieving normalcy again.

Researchers have turned to traditional methods for forecasting
COVID-19 infection and vaccination rates [4-6]. For example,
one of the most common forecasting methods used, univariate
time series, involves predicting future vaccination rates using
historical vaccination rates. While this method can be useful in
many cases, it fails to account for other time-dependent factors
that may also influence vaccinations. For example, the
COVID-19 vaccine conversation on social media has been
deemed an infodemic, with antivaccination misinformation
spreading across social media platforms [7]. Researchers have
found that the internet and social media both play a role in
shaping personal or parental choices about vaccinations [8,9].
Additionally, previous research showed a positive relationship
between positive sentiment scores in COVID-19 vaccine–related
tweets and an increase in vaccination rates [10]. These findings
suggest it is important to consider the daily conversations on
social media when developing vaccine uptake forecast models.

Forecasting COVID-19–Related Measures Using Social
Media
There is no shortage of studies that sought to forecast
COVID-19-related measures using information from social
media. Researchers Yousefinaghani et al [11] conducted a study
using COVID-19–related terms mentioned in tweets and Google
searches to predict COVID-19 waves in the United States.
Researchers found that tweets that mentioned COVID-19
symptoms predicted 100% of first waves of COVID-19 days
sooner than other data sources. Another study used data from
Google searches, tweets, and Wikipedia page views to predict
COVID-19 cases and deaths in the United States [12].
Researchers found models that included features from all 3
sources performed better than baseline models that did not
include these features. Researchers also found that Google
searches were a leading indicator of the number of cases and
deaths across the United States. Another study [13] examined
the relationship between daily COVID-19 cases and
COVID-19–related tweets and Google Trends. In a study
conducted by Shen et al [14], researchers used reports of
symptoms and diagnoses on Weibo, a popular social media
platform in China, in order to predict COVID-19 case counts
in mainland China. Researchers found reports of symptoms and
diagnoses on the social media platform to be highly predictive
of daily case counts. Although each of these studies forecast
COVID-19 cases and deaths, none of these studies forecast
COVID-19 vaccination rates.

Forecasting Vaccinations
Very few studies have conducted time series forecasting of the
COVID-19 vaccinated population in the United States. In a
study conducted by Sattar and Arifuzzaman [15], researchers
developed a time series model to predict the percentage of the
US population that would get at least 1 dose of the COVID-19
vaccine or be fully vaccinated. Researchers projected that by
the end of July 2021, 62.44% and 48% of the US population
would get at least 1 dose of the COVID-19 vaccine or be fully
vaccinated, respectively. Although this paper also included a

separate tweet sentiment analysis, researchers did not include
Twitter-related features in the forecast model. Additionally,
researchers used aggregated vaccination data for the entire
United States, rather than a more granular geographic level.

Another study aimed to evaluate if and when the world would
reach a vaccination rate sufficient enough for herd immunity
by forecasting the number of people fully vaccinated against
COVID-19 in various countries, including the United States
[16]. In this study, researchers used a common univariate time
series forecasting method, autoregressive integrated moving
average (ARIMA), to forecast the future number of fully
vaccinated people using only historical vaccination data. Based
on the resulting projections, researchers concluded that countries
were nowhere near the necessary herd immunity threshold
needed to end the COVID-19 pandemic.

A study conducted by Cheong et al [17] sought to predict
COVID-19 vaccine uptake using various sociodemographic
factors. Although not a time series forecasting model, the results
of this study showed that geographic location, education level,
and online access were highly predictive of vaccination uptake
in the United States. The model predicted vaccine uptake with
62% accuracy.

Although there are very few studies related to COVID-19
vaccination forecasting, other studies have been conducted to
predict immunizations for other illnesses. For example, 1 study
analyzed electronic medical records of a cohort of 250,000
individuals over the course of 10 years [18]. Researchers
developed a model to predict vaccination uptake of individuals
in the upcoming influenza season based on previous personal
and social behavioral patterns. Another study developed a tool
for leveraging immunization related content from Twitter and
Google Trends to develop a model for predicting whether a
child would receive immunizations [19]. Researchers were able
to predict child immunization statuses with 76% accuracy.

Study Objectives
Although previous studies have developed forecast models for
COVID-19 vaccination rates in the United States, to our
knowledge, there are no studies that aim to factor in the real-time
vaccination attitudes present on Twitter. The vaccine attitudes
on Twitter change daily, as do vaccination rates, so analyzing
vaccine attitudes on social media might contribute to the
performance of vaccine forecast models. Additionally, previous
studies developed forecast models that focused on the entire
United States as a whole. These forecast models fail to
appreciate the differences in vaccination roll out, behaviors,
and attitudes across different geographic regions. This study
seeks to fill this gap by examining vaccine uptake at the
metropolitan level.

The purpose of this study is to develop a time series forecasting
algorithm that can predict future vaccination rates across US
metropolitan areas. Specifically, this study aims to determine
whether supplementing forecast models with real-time vaccine
attitudes found in tweets—measured via sentiments and
emotions—improves over baseline models that only use
historical vaccination data. Developing a predictive tool for
vaccination uptake in the United States will empower public
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health researchers and decision makers to design targeted
vaccination campaigns in hopes of achieving the vaccination
threshold required for us to reach herd immunity.

Methods

Data Collection and Preprocessing

Twitter Data
The Twitter streaming application programming interface, which
provides access to a random sample of 1% of publicly available
tweets, was used to collect tweets from 8 of the most populated
metropolitan areas in the United States from January 2021 to
May 2021 (Textbox 1) [20]. We chose to focus on large
metropolitan areas to gather a sufficient number of tweets for
the analysis. Additionally, larger metropolitan areas also tend
to have users who enable the location feature when tweeting
[21,22]. All tweets had “place” information (usually city and

state). The place information found in tweets was used to
determine the metropolitan area associated with each tweet.
Next, to extract tweets related to COVID-19 vaccines, tweets
were further filtered by matching variations of vaccine-related
keywords, such as vaccine, pfizer, moderna, johnson & johnson,
and dose. Additional vaccine keywords can be found in
Multimedia Appendix 1. A language filter was then applied to
identify tweets written in the English language. The tweets
sample was further preprocessed to minimize “noise” resulting
from tweets that matched our vaccine-related keywords but did
not necessarily reflect the thoughts and opinions of individual
Twitter users. For example, companies often promote job
postings and advertisements on Twitter using targeted hashtags
in hopes of reaching their target audience. To prevent these
tweets from adding noise to the sample, tweets related to job
postings and advertisements were removed by excluding tweets
with hashtags and keywords, including “jobs,” “hiring,”
“advertisement,” “apply,” and “ad.”

Textbox 1. Targeted metropolitan areas for Twitter data collection, January 1, 2021, to May 20, 2021.

• Phoenix-Mesa-Chandler, AZ

• Miami–Fort Lauderdale–Pompano Beach, FL

• Atlanta–Sandy Springs–Alpharetta, GA

• New York–Newark–Jersey City, NY-NJ-PA

• Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

• Washington-Arlington-Alexandria, DC-VA-MD-WV

• Chicago-Naperville-Elgin, IL-IN-WI

• Los Angeles–Long Beach–Anaheim, CA

COVID-19 Vaccination Data
Daily COVID-19 vaccination data at the county level was
collected for the January 2021 to May 2021 study period from
the Centers for Disease Control and Prevention’s publicly
available vaccination data set [23]. This data set includes daily
vaccination data from clinics, pharmacies, long-term care
facilities, dialysis centers, Federal Emergency Management
Agency and Health Resources and Services Administration
partner sites, and federal entity facilities. Vaccination
administration data are reported to the Centers for Disease
Control and Prevention via immunization information systems,
the vaccine administration management system, and data
submissions directly to the COVID-19 Data Clearinghouse [23].
Each county was linked to its respective metropolitan area
according to the US Census delineation file [24]. Next, the data
were aggregated to the daily-metropolitan level and the 7-day
rolling average of the percentage of individuals who have been
administered at least 1 vaccine dose was calculated.

Data Analysis

Sentiment and Emotion Analysis of Tweets
For the purposes of this study, we measure COVID-19 vaccine
attitudes via sentiment and emotion analyses of tweets. We
evaluated both sentiments and emotions because both methods
offer different levels of granularity. Sentiment analysis focuses
on determining the overall sentiment or polarity of a text, such

as positive, negative, or neutral. It provides a high-level
understanding of the sentiment expressed. Emotion analysis,
on the other hand, aims to identify specific emotions within the
text, such as joy, anger, and sadness. It offers a more detailed
and nuanced understanding of the emotional states. By utilizing
both sentiment and emotion analysis, we gain a comprehensive
understanding of the text, covering both the overall sentiment
and the specific emotions expressed.

To capture the sentiments and emotions found in COVID-19
vaccine-related tweets, a sentiment and emotion analysis of all
tweets was conducted using bidirectional encoder representation
from transformer (BERT) [25], a pretrained language model
trained using bidirectional (left to right and right to left) context
training to learn joint probability distributions of text. We
leveraged the fine-tuned BERT models in the TweetNLP
package in Python (Python Software Foundation) [26] to
calculate the valence of 8 different emotions (fear, joy,
anticipation, anger, disgust, sadness, surprise, trust), along with
overall neutral, positive, and negative sentiment of tweets in
our analysis sample. The sentiment analysis and emotion
recognition BERT models were fine-tuned with the TweetEval
benchmark [27].

The outputs from BERT are softmax of logits, one
corresponding to each of the emotions or sentiments. For each
tweet, we performed argmax over the probability distribution
for each tweet, to get the most likely emotion and sentiment.
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Next, we found the percentage of tweets classified as each of
the emotions and sentiments for each day and metro area
combination. For example, the count of anger tweets on January
1 for the New York–Newark–Jersey City, NY-NJ-PA
metropolitan area divided by the total number of tweets on
January 1 for the New York–Newark–Jersey City, NY-NJ-PA
metropolitan area gives percentage of anger tweets for January
1 in the New York–Newark–Jersey City, NY-NJ-PA
metropolitan area.

The total number of COVID-19 vaccine related tweets and users
per 100,000 population was also calculated for each day of data
collection, at the metropolitan level. Finally, user engagement
metrics, including the average number of retweets and favorites,
were calculated for each day of data collection, at the
metropolitan level. Retweets and favorites suggest, after
processing the information, that a user resonates with an idea
expressed in a tweet [28,29]. Therefore, we believe these
engagement metrics might also reflect vaccine attitudes.

Time Series Model
The data were divided into training and test data sets, where the
time series analysis was trained using the data set created from
the January 1, 2021, to April 12, 2021, time period, and tested
on the data set created from the April 13, 2021, to May 20, 2021,
time period. ARIMA models were executed for forecasting the
proportion of individuals who have been administered at least
1 vaccine dose. Autoregressive integrated moving average
exogenous variable model (ARIMAX) models, which are
extensions of ARIMA models that include independent
predictors called exogenous variables, were also executed. The
ARIMA method has been widely used in time series forecasting
and public health surveillance [30-32]. An ARIMA model
typically consists of three components: (1) auto-regression,
notated in the model as p; (2) differencing, notated in the model
as d; and (3) moving average, notated in the model as q [33].
In an ARIMA model, the present value of the time-series is a
linear function of random noise and its previous values; the
present value is also a linear function of both present and past
values of the residuals in the model; and the auto-regressive
moving average model includes both the auto-regressive and

moving average models, in addition to the historical values in
the time series and its residuals [30].

Stationarity of a time series is a key assumption when making
predictions based on past observations of a variable [34].
Stationarity requires the properties (mean and variance) of a
time series to remain constant over time, thus making future
values easier to predict [35]. Otherwise, the results are spurious
and analyses are not valid [30]. The stationarity of all variables
included in the time series was assessed using the Dickey-Fuller
(dfuller) test. If the null hypothesis is rejected, stationarity is
satisfied. If stationarity is not satisfied, variables must undergo
differencing, a process that removes any trend in the times series
that is not of interest [35]. All differencing and model selection
was performed by the auto_arima function from the pmdarima
package in Python [36], which is a function that selects the
optimal order of the model based on the Hyndman-Khandakar
algorithm for automatic ARIMA modeling [37]. A combination
of unit root tests and minimization of the Akaike information
criterion and Bayesian information criterion allows this
algorithm to select the best preforming model order by fitting
several variations of model components p, d, and q [38]. By
including a penalty that is an increasing function of the number
of estimated parameters, the information criteria scores
maximize the goodness of fit while minimizing the number of
model parameters, effectively dealing with both the risk of
overfitting and the risk of underfitting [39,40].

For each metropolitan area, a baseline ARIMA model with no
exogenous variables was constructed to forecast the 7-day
rolling average of the number of individuals who have been
administered at least 1 vaccine dose, using only past values of
this outcome. To assess the ability of vaccine attitudes on
Twitter to improve COVID-19 vaccination forecasts, multiple
ARIMAX models were executed, each with individual
Twitter-derived features included as exogenous variables.
Additionally, we executed a multivariate ARIMAX model that
included those Twitter attitudes that showed improvement over
the ARIMA baseline across all metro areas. A final ARIMAX
model that contained all Twitter features regardless of
performance was attempted but did not converge. A complete
list of the constructed time series models can be found in Table
1.
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Table 1. Time series models predicting COVID-19 vaccine uptake, January 1, 2021, to May 20, 2021.

Exogenous variablesModel type

None (baseline)ARIMAa

Number of users per 100,000 populationARIMAXb

Number of tweets per 100,000 populationARIMAX

Average favoritesARIMAX

Average retweetsARIMAX

% Positive sentimentARIMAX

% Negative sentimentARIMAX

% Neutral sentimentARIMAX

% TrustARIMAX

% SurpriseARIMAX

% SadnessARIMAX

% JoyARIMAX

% FearARIMAX

% DisgustARIMAX

% AnticipationARIMAX

% AngerARIMAX

Best predictors (predictors that show improvement over baseline across
all metro areas)

ARIMAX

aARIMA: autoregressive integrated moving average.
bARIMAX: autoregressive integrated moving average exogenous variable model.

Ethical Considerations
This project does not meet the definition of human participant
research under the purview of the University of Maryland
Institutional Review Board according to federal regulations,
section 45CFR46.102(e) [41].

Results

Twitter Data
A total of 59,687 COVID-19 vaccine-related tweets were
collected during the data collection period, across 23,878 users
(Table 2). The Los Angeles–Long Beach–Anaheim metropolitan
area had the largest representation of tweets (13,125/59,687,
21.99%) as well as the largest representation of users

(5620/23,878, 23.54%). The Miami–Fort Lauderdale–Pompano
Beach metropolitan area had the smallest representation of
tweets (1631/59,687, 2.73%) as well as the smallest
representation of users (625/23,878, 2.62%). The maximum
number of tweets by a single individual was 228 (from a user
in the Washington-Arlington-Alexandria metropolitan area).

The temporal trends for the number of COVID-19
vaccine–related tweets from January to May 2021 are presented
in Figure 1. The number of COVID-19 vaccine–related tweets
fluctuated over time; however, a peak in the number of tweets
was observed during the week of April 5, 2021, to April 11,
2021. This was the week that President Joe Biden announced
that every adult in the United States would be eligible to receive
a COVID-19 vaccine starting April 19, 2021 [42].
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Table 2. Number of COVID-19 vaccine tweets (n=59,687) and users (n=23,878) by city, January 1, 2021, to May 20, 2021.

Average favorites,
mean (SD)

Average retweets,
mean (SD)

Users, n, %Tweets, n, %Metropolitan area

10 (178)438 (5140)5431 (22.7)12,623 (21.1)Atlanta–Sandy Springs–Alpharetta, GA

11 (118)543 (9579)2847 (11.9)6857 (11.5)Chicago-Naperville-Elgin, IL-IN-WI

13 (224)351 (4209)4858 (20.3)12,387 (20.8)Los Angeles–Long Beach–Anaheim, CA

131 (2389)267 (3187)1558 (6.5)4345 (7.3)Miami–Fort Lauderdale–Pompano Beach, FL

6 (20)169 (1704)914 (3.8)2231 (3.7)New York–Newark–Jersey City, NY-NJ-PA

13 (124)304 (3952)2025 (8.5)6488 (10.9)Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

10 (178)438 (5140)5431 (22.7)12,623 (21.1)Phoenix-Mesa-Chandler, AZ

11 (118)543 (9579)2847 (11.9)6857 (11.5)Washington-Arlington-Alexandria, DC-VA-MD-WV

Figure 1. Number of COVID-19 vaccine tweets over time, across all metropolitan areas, January 1, 2021, to May 20, 2021.

Sentiment and Emotion Analysis
A sentiment analysis classified most tweets across all
metropolitan areas as having neutral sentiment, with joy as the
predominantly expressed emotion (Table 3). The
Phoenix-Mesa-Chandler metropolitan area had the largest
proportion of tweets with positive sentiment (3875/12,623,
30.7%), while the Miami–Fort Lauderdale–Pompano Beach

metropolitan area had the lowest proportion of tweets with
positive sentiment (1065/4345, 24.5%). Anger and disgust were
the most perceived negative emotions. The Atlanta–Sandy
Springs–Alpharetta, GA metropolitan area had the largest
proportion of tweets with negative sentiment (3888/12,623,
30.8%), while the Miami–Fort Lauderdale–Pompano Beach
metropolitan area had the lowest proportion of tweets with
negative sentiment (1060/4345, 24.4%).
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Table 3. Distribution of sentiments and emotions among COVID-19 vaccine tweets collected from January 1, 2021, to May 20, 2021 (N=59,687).

Positive,
%

Neutral,
%

Negative,
%

Trust,
%

Surprise,
%

Sadness,
%

Joy, %Fear, %Disgust,
%

Anticipation,
%

Anger, %Metropolitan area

27.24230.800.2630.4714.22418.1Atlanta–Sandy
Springs–Alpharet-
ta, GA

30.640.429.10.10.15.733.76.313.923.416.9Chicago-
Naperville-Elgin,
IL-IN-WI

29.739.930.400.26.933.47.112.722.417.4Los Ange-
les–Long
Beach–Anaheim,
CA

24.551.124.40.10.15.532.45.613.928.114.2Miami–Fort
Lauderdale–Pom-
pano Beach, FL

28.942.328.80.10.25.331.86.513.724.917.5New
York–Newark–Jer-
sey City, NY-NJ-
PA

27.444.128.600.15.829.26.913.42618.5Philadelphia-
Camden-Wilm-
ington, PA-NJ-
DE-MD

30.740.828.500.15.732.27.113.92318Phoenix-Mesa-
Chandler, AZ

27.144.728.200.15.329.66.814.328.615.3Washington-Ar-
lington-Alexan-
dria, DC-VA-
MD-WV

Time Series Forecast
Multiple time series models were constructed to forecast the
vaccine uptake rate (7-day rolling average). The results of the
Dickey-Fuller (dfuller) test for stationarity revealed that across
all metropolitan areas, stationarity did not hold for several of
the variables (Tables 4 and 5). However, the necessary
differencing was automatically applied via the auto_arima
function.

The performance of the optimal models across all regions, as
determined by the auto_arima function, can be found in Tables
6 and 7. The best-performing model for each metropolitan area
is marked by an asterisk. Models that performed better than the
baseline model are bolded. Model performance for the
“out-sample” forecasts was evaluated using the root mean square
error (RMSE) instead of Akaike information criterion because
RMSE measures how close the data are around the line of best
fit [43]. This measure is commonly used in time series
forecasting to evaluate how close the forecasted values are to

the actual values [44]. When evaluating model performance
using RMSE, across all metropolitan areas, the addition of a
Twitter-derived feature related to COVID-19 vaccination
attitudes improved model performance by up to 83%. For
example, across all metropolitan areas, adding the percentage
of vaccine tweets expressing joy, negative sentiment, surprise,
or trust individually as exogenous variables resulted in a lower
RMSE compared to the baseline ARIMA model. Additionally,
across all metropolitan areas, most of the ARIMAX models,
which each had 1 Twitter-derived feature related to COVID-19
vaccination attitudes, showed improvement over the baseline
ARIMA model that did not factor in Twitter-derived features.
A final model that contained the 3 features that consistently
showed improvement over baseline across all metro areas
(negative sentiment [%], surprise [%], joy [%], trust [%])
showed improvement over the baseline ARIMA when combined
into 1 model (ARIMAX with multiple exogenous variables)
across all metropolitan areas except for
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD and
Phoenix-Mesa-Chandler, AZ.
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Table 4. Dickey-Fuller (dfuller) test for stationarity in Atlanta–Sandy Springs–Alpharetta, GA, Chicago-Naperville-Elgin, IL-IN-WI Los Angeles-–Long
Beach–Anaheim, CA, and Miami–Fort Lauderdale-–Pompano Beach, FL.

Miami–Fort Lauderdale–Pompano
Beach, FL

Los Angeles–Long
Beach–Anaheim, CA

Chicago-Naperville-Elgin,
IL-IN-WI

Atlanta–Sandy Springs–Al-
pharetta, GA

Variable

P valueTest statisticP valueTest statisticP valueTest statisticP valueTest statistic

.003−3.776.11a−2.512.03−3.091.66a−1.237% Anger

.01−3.375.49a−1.594.10a−2.579.34a−1.879% Anticipation

.04−2.956.001−4.080.03−3.073.001−4.154Average favorites

.02−3.239.007−3.526.99a1.632.047−2.882Average retweets

.01−3.414.42a−1.711.13a−2.435.04−2.915% Disgust

.07a−2.707.02−3.195.004−3.698.04−2.908% Fear

.18a−2.264.60a−1.354.12a−2.500.51a−1.548% Joy

.23a−2.142.57a−1.425.21a−2.198.45a−1.666% Negative sentiment

.05a−2.841.46a−1.655.003−3.820.20a−2.223% Neutral sentiment

.29a−2.001.66a−1.221.61a−1.333.52a−1.521Number of tweets per
100,000 population

.31a−1.947.66a−1.241.61a−1.334.56a−1.450Number of users per
100,000 population

.05a−2.847.65a−1.256.09a−2.626.64a−1.281% Positive sentiment

.96a0.057.95a−0.048.82a−0.814.88a−0.569Percentage of individuals
who have been adminis-
tered at least 1 vaccine
dose (7-day rolling aver-
age)

.02−3.249.02−3.157.09a−2.619.003−3.817% Sadness

.45a−1.658.002−3.883.16a−2.349.001−4.030% Surprise

<.001−5.039.24a−2.120.02−3.128.07a−2.739% Trust

aNonstationary variable results.
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Table 5. Dickey-Fuller (dfuller) test for stationarity in New York–Newark–Jersey City, NY-NJ-PA, Philadelphia-Camden-Wilmington, PA-NJ-DE-MD,
Phoenix-Mesa-Chandler, AZ, and Washington-Arlington-Alexandria, DC-VA-MD-WV.

Washington-Arlington-Alexandria,
DC-VA-MD-WV

Phoenix-Mesa-Chandler,
AZ

Philadelphia-Camden-
Wilmington, PA-NJ-DE-
MD

New York–Newark–Jersey
City, NY-NJ-PA

P valueTest statisticP valueTest statisticP valueTest statisticP valueTest statisticVariable

.20a−2.233.02−3.275<.001−4.880.03−3.084% Anger

.24a−2.111.01−3.400.006−3.586.01−3.336% Anticipation

.11a−2.507.01−3.367.04−3.001.06a−2.786Average favorites

.13a−2.451.10a−2.596.46a−1.647.07a−2.724Average retweets

.16a−2.330.44a−1.678.17a−2.307.20a−2.218% Disgust

.043−2.960.005−3.625.02−3.129.07a−2.730% Fear

.54a−1.493.37a−1.826.07a−2.702.15a−2.383% Joy

.41a−1.747.36a−1.846.046−2.897.57a−1.432% Negative sentiment

.29a−1.998.41a−1.738.005−3.635.29a−1.993% Neutral sentiment

.34a−1.890.67a−1.205.47a−1.617.58a−1.402Number of tweets per
100,000 population

.38a−1.796.71a−1.116.43a−1.697.55a−1.461Number of users per
100,000 population

.498a−1.572.25a−2.080.003−3.793.43a−1.702% Positive sentiment

.95a−0.085.54a−1.483.73a−1.064.82a−0.792Percentage of individuals
who have been adminis-
tered at least 1 vaccine
dose (7 day rolling aver-
age)

.31a−1.954.02−3.206.18a−2.263.05−2.862% Sadness

.51a−1.544.03−3.082.09a−2.599.046−2.893% Surprise

.03−3.078.05a−2.854.06a−2.463.069a−2.733% Trust

aNonstationary variable results.
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Table 6. ARIMAa/ARIMAXb model performance (RMSEc) for Atlanta–Sandy Springs–Alpharetta, GA, Chicago-Naperville-Elgin, IL-IN-WI, Los
Angeles–Long Beach–Anaheim, CA, and Miami–Fort Lauderdale–Pompano Beach, FL. Models that performed better than the baseline ARIMA are
shown in italics.

Miami–Fort Laud-
erdale–Pompano
Beach, FL, RMSE

Los Angeles–Long
Beach–Anaheim,
CA, RMSE

Chicago-Naperville-
Elgin, IL-IN-WI,
RMSE

Atlanta–Sandy
Springs–Alpharetta,
GA, RMSE

Variables

3.71094.14734.21824.0855(Baseline) percentage of individuals who have been admin-
istered at least 1 vaccine dose (7 day rolling average)

1.29710.71981.39001.6356Number of users per 100,000 population

1.34920.71311.37001.6420Number of tweets per 100,000 population

4.00450.68784.21002.1176Average favorites

1.40624.13561.24145.3545Average retweets

1.16910.70511.30001.6182% Positive sentiment,

1.21680.69151.33001.6238% Negative sentiment

3.72170.72131.1600 d1.6236% Neutral sentiment

1.14074.14714.21834.0854% Trust

1.13140.70781.33711.6522% Surprise

3.71170.70771.24001.5826 d% Sadness

1.23220.6865 d1.36001.6243% Joy

3.70280.69734.19001.6751% Fear

3.76700.70541.32001.6401% Disgust

1.1006 d0.70374.20004.6909% Anger

3.71150.70791.28001.6589% Anticipation

1.29010.69211.28781.7324Best predictors: joy (%), negative sentiment (%), surprise
(%), trust (%)

aARIMA: autoregressive integrated moving average.
bARIMAX: autoregressive integrated moving average exogenous variable model.
cRMSE: root mean square error.
dBest-performing model for each metropolitan area.
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Table 7. ARIMAa/ARIMAXb model performance (RMSEc) for New York–Newark–Jersey City, NY-NJ-PA, Philadelphia-Camden-Wilmington,
PA-NJ-DE-MD, Phoenix-Mesa-Chandler, AZ, and Washington-Arlington-Alexandria, DC-VA-MD-WV. Models that performed better than the baseline
ARIMA are shown in italics.

Washington-Arling-
ton-Alexandria, DC-
VA-MD-WV,
RMSE

Phoenix-Mesa-
Chandler, AZ,
RMSE

Philadelphia-Cam-
den-Wilmington,
PA-NJ-DE-MD,
RMSE

New
York–Newark–Jer-
sey City, NY-NJ-
PA, RMSE

2.58292.77434.47374.7686(Baseline) percentage of individuals who have been admin-
istered at least 1 vaccine dose (7 day rolling average)

1.15541.99831.25241.8473Number of users per 100,000 population

1.12591.97691.27371.8329Number of tweets per 100,000 population

0.75701.94065.60784.7564Average favorites

0.75702.77280.9200d1.8838Average retweets

1.11681.94524.83391.8682% Positive sentiment,

1.12061.91181.24861.8757% Negative sentiment

2.58251.89321.23924.7722% Neutral sentiment

1.13271.93721.25031.8659% Trust

1.12101.93741.22794.7668% Surprise

2.43921.93551.16154.4896% Sadness

1.14501.94241.19561.8397% Joy

1.06321.93714.51144.7720% Fear

1.13801.95201.25061.8207d% Disgust

0.68341.8858d4.61791.9003% Anger

1.10881.94541.23481.9060% Anticipation

0.6816d5.153833.54462.7323Best predictors: joy (%), negative sentiment (%), surprise
(%), trust (%)

aARIMA: autoregressive integrated moving average.
bARIMAX: autoregressive integrated moving average exogenous variable model.
cRMSE: root mean square error.
dBest-performing model for each metropolitan area.

Effect of Models on Performance
To understand the effect of modeling choices on the usefulness
of Twitter-derived features to improve COVID-19 vaccination
rate predictions, we evaluated 2 additional models: one that
used the Syuzhet package [45]—instead of BERT—to extract
the same set of sentiments and emotions from tweets and then
ARIMA/ARIMAX to predict COVID-19 vaccination rates; and
another model that used BERT to extract sentiments and
emotions from tweets and deep learning—a Temporal Fusion
Transformer Model [46]—to predict COVID-19 vaccination
rates, instead of ARIMA/ARIMAX. We confirmed that
independently of the model selected, the same findings
hold—the results of these models show that adding
Twitter-based features to COVID-19 vaccination rates in

predictive models improves most baselines, independently of
the model and the city, albeit with higher RMSE than the ones
shown in Tables 6 and 7. We have included descriptions, results,
and a discussion of these other 2 models in Multimedia
Appendix 2.

Figure 2 illustrates the performance of the baseline ARIMA
models and the best-performing ARIMAX models, compared
to the observed values of the outcome variable during the
“out-sample” forecasting period (April 13, 2021, to May 20,
2021). Across all metropolitan areas, the ARIMAX time series
models with Twitter-derived features aligned more closely with
the actual values of the vaccination rates compared to the
baseline ARIMA model that relied on past historical vaccination
data alone.
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Figure 2. Predicted versus observed COVID-19 vaccination rates, January 1, 2021, to May 20, 2021. ARIMA: autoregressive integrated moving
average; ARIMAX: autoregressive integrated moving average exogenous variable model.

Discussion

Principal Findings
In this study, we sought to determine whether supplementing
forecast models with COVID-19 vaccine attitudes found in
tweets—modeled via sentiments and emotions—improves over
baseline models that only use historical vaccination data. When
evaluating model performance across all metropolitan areas,
the addition of COVID-19 vaccine attitudes found in tweets
resulted in improved model performance, as reflected by RMSE,
when compared to baseline forecast models that did not include
these features. Specifically, compared with the traditional
ARIMA model with vaccination data alone, ARIMAX models
with the predictions of both historical vaccination data and
COVID-19 vaccine attitudes found in tweets reduced RMSE
by as much as 83%. We were able to replicate similar findings
across various modeling choices, including the Syuzhet package
to extract sentiments and emotions, instead of BERT, and deep
learning (temporal fusion transformer model) to predict
COVID-19 vaccination rates, instead of ARIMA/ARIMAX.

Study Findings in Context
The ongoing COVID-19 pandemic emphasizes the need for
innovative approaches to public health surveillance. The global
public health community has monitored the COVID-19
pandemic by tracking case counts, hospitalizations, deaths, and
vaccinations. For the United States, these data sets are publicly
available. Forecasting case counts and vaccination rates using
existing historical data has been a key approach in COVID-19
surveillance efforts [47]. Previous forecast models for predicting
vaccine uptake rate relied on traditional ARIMA methods, where
historical data were used to predict future rates [48]. However,
social media data sources, such as Twitter, reveal society’s
attitudes toward the pandemic and current vaccination efforts
on a real-time basis. This provides an opportunity for a large

volume of raw and uncensored data related to vaccine attitudes,
across various geographic locations, to be leveraged for disease
surveillance, which can subsequently be used to supplement
and improve existing models.

The findings of this study suggest that attitudes extracted from
Twitter data can be added to existing forecast models for
monitoring vaccination uptake across various metropolitan
areas. In certain metropolitan areas, the mere volume of tweets
and users engaged in vaccine-related conversations improved
model performance when compared to baseline models. These
results echo the findings in the study by Maugeri et al [33],
which revealed another social media source, Google Trends
data, improved the prediction of COVID-19 vaccination uptake
in Italy when compared to baseline models. In this study, Google
Trends data were represented as the relative search volume for
each vaccine-related keyword. Another similar study developed
a framework for predicting vaccination rates in the United States
based on traditional clinical data and web search queries [49].
The results of this study also revealed the ability for online
networks to predict societal willingness to receive vaccinations.
Specifically, the authors similarly found improvement in model
performance as in this study—with a reduction in RMSE of
9.1%.

Although few studies sought to supplement current vaccine
models with social media data, to our knowledge, there are no
studies that go beyond the mere volume of relevant Twitter data
and factor in the sentiment and emotion of vaccine-related
conversations. Over the course of the pandemic, some states
experienced low vaccination rates despite comprehensive
vaccine roll out programs. In these cases, it is important to
consider the public’s emotions and sentiments toward vaccines.
This study contributes to the literature by evaluating the ability
for sentiments and emotions related to the COVID-19 vaccine
to predict vaccine uptake. Specifically, the results show an
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improvement in model performance across metropolitan areas
when models were supplemented with the percentage of tweets
expressing anger, fear, joy, positive sentiment, or neutral
sentiment. A study conducted by Alegado and Tumibay [48]
examined the association between sentiments and emotions
found in tweets and vaccine uptake via regression coefficient
analysis. This study showed similar insights—tweets expressing
fear, sadness, and anger appeared to be significantly associated
with vaccination rates.

The results of this study have several implications for the present
COVID-19 response. Public health experts now argue that the
traditional concept of herd immunity may not apply to
COVID-19 [2]. Instead, the focus is to increase vaccination
uptake to substantially control community spread, without the
societal disruptions caused by the virus [3]. Accurately
forecasting vaccination uptake allows policy makers and
researchers to evaluate how close we are to achieving normalcy
again. Additionally, similar algorithms allow public health
practitioners to better anticipate vaccine uptake behaviors and
therefore develop targeted policies. As the global community
builds toward achieving herd immunity, researchers should also
“listen” to the vaccine conversation on social
media—monitoring misconceptions and misinformation and
implementing targeted vaccine education campaigns that address
these misconceptions. Although the COVID-19 pandemic
appears to be improving, the present framework can also be
used to improve vaccine forecast models for future pandemics.

Limitations and Future Work
It is important to note that this study has some limitations. The
study period was limited to the first half of 2021. However,
vaccines were not yet available to most of the US adult
population until April 2021. Therefore, the study period did not
capture the height of vaccination efforts. Another limitation is
that as the COVID-19 pandemic evolves, vaccine related
keywords may change, requiring frequent updating of the model.
Future work may involve the use of topic modeling to capture
the general themes surrounding the COVID-19 pandemic.

Another limitation is related to the geographic scope of this
study. This study only focused on forecasting vaccine uptake
in the United States. However, it is important to note that
vaccination efforts must be addressed on a global scale, not just
domestically, for normalcy to be attained. Future work should
consider collecting tweets and vaccination data from other
countries to see if similar models improve vaccine forecasts
globally. Additionally, this study only examined tweets posted
in the English language. Limiting the study to the collection of
Tweets only in the English language poses a limitation as it may
overlook valuable insights and perspectives expressed in other
languages. This exclusion could lead to a biased understanding
of sentiments and emotions, potentially missing out on crucial
data from non–English-speaking populations. Language barriers
may hinder the study's generalizability and restrict the
representation of diverse cultural contexts. Future work should
involve the use of sentiment and emotion classifiers that include
lexicons in other languages.

Conclusions
Researchers have found that the internet and social media both
play a role in shaping personal or parental choices about
vaccinations. Although few previous studies have developed
forecast models for COVID-19 vaccination rates in the United
States, to our knowledge, there are no studies that aim to factor
in the real-time vaccination attitudes present on Twitter. This
study suggests the benefits of using the linguistic constructs
found in tweets to improve predictions of the COVID-19
vaccination rate. In this study, we found that supplementing
baseline forecast models with both historical vaccination data
and COVID-19 vaccine attitudes found in tweets reduced RMSE
by as much as 83%. Developing a predictive tool for vaccination
uptake in the United States will empower public health
researchers and decision makers to design targeted vaccination
campaigns in hopes of achieving the vaccination threshold
required for widespread population protection.
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Abbreviations
ARIMA: autoregressive integrated moving average
ARIMAX: autoregressive integrated moving average exogenous variable model
BERT: bidirectional encoder representation from transformer
RMSE: root mean square error
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